

ECCO TOWN HALL

lan Fenty¹

Arash Bigdeli², Gael Forget³, Nora Loose², Helen Pillar², Tim Smith²

¹Jet Propulsion Laboratory, California Institute of Technology,

²University of Texas, Austin,

³Massachusetts Institute of Technology


- The "Estimating the Circulation and Climate of the Ocean" (ECCO) consortium is directed at making the best possible estimates of ocean circulation and its role in climate.
- **Solutions are obtained** by combining state-of-the-art ocean circulation models with global ocean data sets in a physically and statistically consistent manner.
- **Products are being utilized** in studies on ocean variability, biological cycles, coastal physics, water cycle, ocean-cryosphere interactions, and geodesy, and are available for general applications.

ECCO TOWN HALL

- 1. What is ECCO?
- 2. What is provided in the state estimate?
- 3. Some comparisons to observations
- 4. Example applications
- 5. Resources
 - Analysis tools
 - Summer school lectures
- 6. Regional ECCO projects
- 7. Future directions
- 8. Where to get help

Goal: to make the best possible estimates of ocean circulation and climate.

ECCO state estimates are *multi-platform, multi-instrument* synthesis products that integrate ocean and ice observations and models

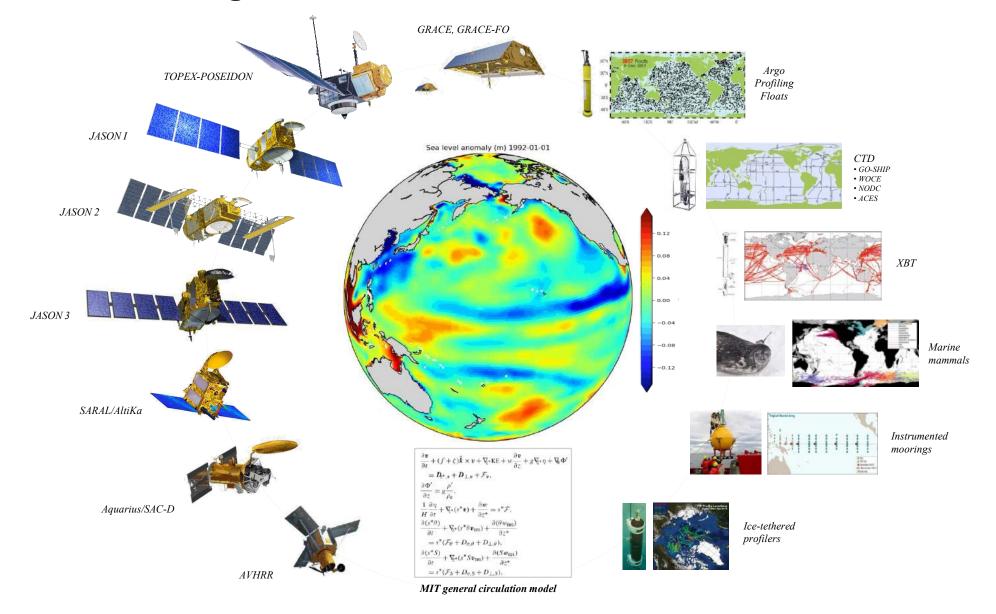
The ECCO Consortium is comprised of an international group of scientists across several institutions

Atmospheric and Environmental Research

Massachusetts

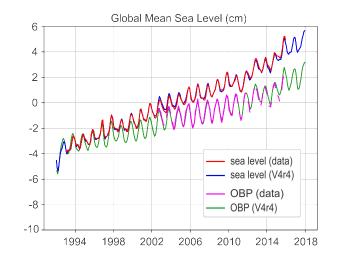
Institute of

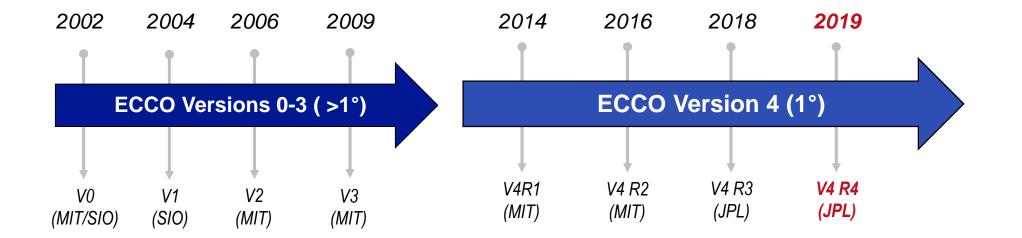
Technology



- Physical Oceanography (PO)
- Cryosphere
- Modelling, Analysis, and Prediction (MAP)
- Advancing Collaborative Connections for Earth System Science (ACCESS)

ECCO state estimates are *multi-platform, multi-instrument* synthesis products that integrate ocean and ice observations and models

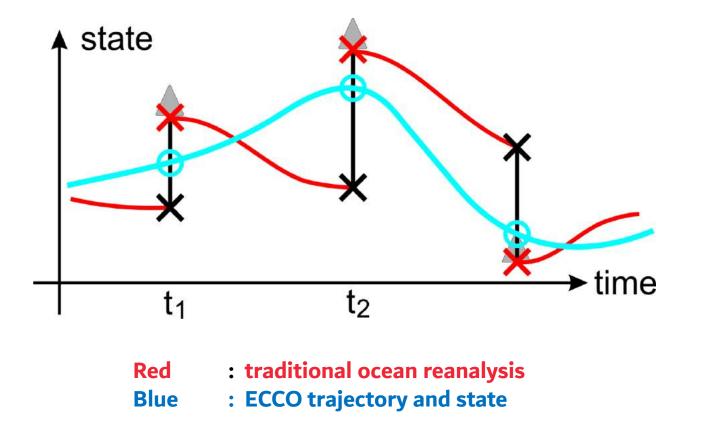



ECCO "Central Production" Timeline

ECCO Version 4 is our flagship ocean state estimate.

The first adjoint-based, multi-decadal 3D timeevolving global ocean and sea-ice state estimate.

Latest Product: Version 4 Release 4, 1992-2017



ECCO Central Production v4: Release 4

A new 4-D (space and time) reconstruction of the global ocean and sea-ice state from 1992-2017

The reconstruction is a **synthesis** of > 10⁸ *in situ* and satellite remote sensing **observational data** with a coupled ocean and sea-ice general circulation **model**

The **model** is **made consistent** with the **observational data** in a leastsquares sense using the model's **adjoint**.

Observational data used to constrain the model

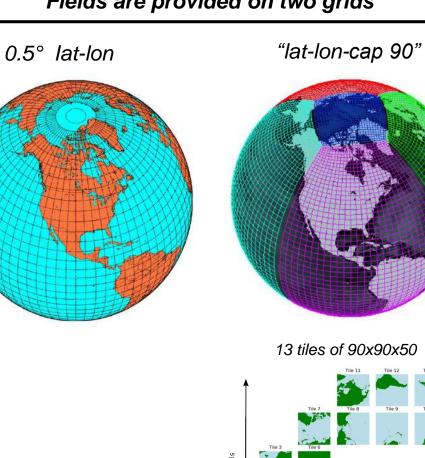
New or updated items for ECCOv4 Release 4 are indicated in red.

Variable	Observations
Sea surface height	ERS-1/2 (1992-2001), TOPEX/Poseidon (1993-2005), GFO (2001-2007), ENVISAT (2002-2012), Jason-1 (2002-2008), Jason-2 (2008-2017), CryoSat- 2 (2011-2017), SARAL/AltiKa (2013-2017), Jason-3 (2016-2017),
In situ temperature	Argo floats (1995-2017), CTDs (1992-2017), XBTs (1992-2017), marine mammals (APB 2004-2017), gliders (2003-2017), Ice- Tethered Profilers (ITP, 2004-2017), moorings (1992-2017)
In situ salinity	CTDs (1992-2017), moorings (1992-2017), Argo floats (1997-2017), gliders (2003-2017), marine mammals (APB 2004-2017), ITP (2004-2017),
Sea surface temp.	AVHRR (1992-2017)
Sea surface salinity	Aquarius (2011-2015)
Sea-ice concentration	SSM/I (1992-2009), SSMIS (2006- <mark>2017</mark>)
Ocean bottom pressure	GRACE (2002-2016), JPL MASCON Solution
T and S climatology	World Ocean Atlas 2009
Mean dynamic Topography	DTU17 (1992-2015)

ECCO fields provided to the community

Monthly and daily mean:

Ocean + sea-ice


- *T*, *S*, *u*, *v*, *w*, *η*, *ρ*, *Φ*
- Sea-ice and snow h and c
- Lateral and vertical fluxes of volume, heat, salt, and momentum

Atmosphere

- T, q, |u|, τ, long- and radiative fluxes
- Air-sea-ice-ocean fluxes of heat, moisture, energy, and momentum

Subgrid-scale mixing parameters

- 3D GM k and Redi k
- 3D vertical diffusivity

x-axis

Fields are provided on two grids

ECCO on NASA's PO.DAAC

Physical Oceanography Distributed Active Archive Center

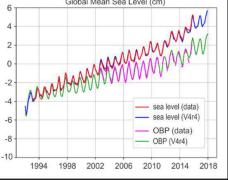
ASA	Jet Propulsion Laboratory California Institute of Technology	JPLHOME EARTH SOLAR SYSTEM STARS & GALAXIES SCI BRING THE UNIVERSE TO YOU 🧱 f 💓 🚷 🛅	the second second second second second second second second second		
and the second se	Oceanography Distributed Active Archive Center	Follow Us Data Search	a free		
C	CO Drive	G Back to WebDAV C	Credentials		
	nt Location:				
22.6.5	ersion4 / Release4 /	Last Modified	Size		
P	Parent Directory	-	-		
d	loc	2019-12-05 21:28:13	-		
Ì ir	nput_ecco	2019-09-23 22:01:35	9		
ì ir	nput_forcing	2019-09-30 17:41:07	-		
ir	nput_init	2019-09-30 17:41:37	-		
ir	nterp_monthly	2019-11-21 16:48:39	-		
n	ctiles_daily	2019-11-06 23:19:42	-		
n	ctiles_monthly	2019-12-05 17:21:05	-		
n	ctiles_monthly_snapshots	2019-09-30 17:42:32	(w)		
0	ther	2019-11-12 22:53:52	-		
P	rofiles	2019-09-30 17:42:54	9 2 10		

Documentation

- Summary
- Analysis plots
- Instructions for re-running the model and calculating budgets

State estimate fields (NetCDF)

Observational data


Fields required to re-run the model

- Grid geometry
- Configuration files
- Model initial conditions
- Atmospheric and hydrological boundary conditions

https://ecco.jpl.nasa.gov/drive/files/Version4/Release4

mirrored at https://web.corral.tacc.utexas.edu/OceanProjects/ECCO/ECCOv4/Release4/

Version 4 release 4, covering 1992-2017, now available -

Portione = under calls Positive = under call Positive = under calls Positiv

Latest Updates

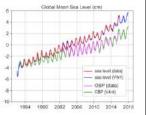
ECCO Town Hall at Ocean Sciences 2020 (02/20 < 18:30-19:30)

The ECCO Consortium will host a town hall meeting at the 2020 Ocean Sciences Meeting in San Diego, CA, on Thursday, 20 February, 18:30-19:30. Attendees will be shown how to obtain the latest ECCO ocean state estimates and provided instructions for calculating heat, salt, and volume budget analyses, comparing the state estimates against observational data, and for re-running the open-source ECCO model for additional custom investigations. Python and Matlab computational libraries and tutorials that facilitate ECCO analyses will be introduced.

ECCO website https://ecco.jpl.nasa.gov

Jet Propulsion Laboratory California Institute of Technology

Latest Product


All Products

ECCO-V4r4

Authors: Fukumori, Ichiro; Wang, Ou; Fenty, Ian; Forget, Gael; Heimbach, Patrick; Ponte, Rui M.

Description:

Version 4 Release 4 (V4r4), covering the period 1992-2017, represents ECCO's latest ocean state estimate. This product is an updated edition to that described by Forget et al. (2015, Geosci. Model Dev.). Version 4 is the first multi-decadal ECCO estimate that is truly global, including the Arctic Ocean. The Release 4 edition includes improvements in time-period (1992-2017), model (e.g., sea-ice), observations (e.g., GRACE, Aquarius), and constraints (e.g., correlated errors).

[Image at right] Global mean time-series of sea level and ocean bottom pressure (in equivalent sea level) of V4r4 in comparison to observations.

Overview

Period:	Jan 1992 - Dec 2017
Grid & Resolution:	LLC90 (1 deg)
Domain:	Global
Variable:	Ocean State (temperature, salinity, velocity, sea level, bottom pressure). Fluxes (temperature, salt, volume)
Temporal Resolution:	Monthly, Daily, Hourly
Data Used:	Satellite Altimetry, ARGO, GRACE, Aquarius, CTD, XBT
Type of Estimation:	Adjoint
Data Format(s):	NetCDF, Binary
Version:	Release 4
Contact Person:	Ian Fenty, Ichiro Fukumori, Ou Wang
Last Updated Date:	October 24, 2019

User Guide

A detailed description of available files and their content are summarized in a "User Guide" in the link below. Although written for the previous release (V4r3), the User Guide, in addition to other files that follow, apply equally to the present Release 4 estimate.

Read the User Guide

ECCO website https://ecco.jpl.nasa.gov

Includes instructions for reproducing the state estimate with the MITgcm

Jet Propulsion Laboratory California Institute of Technology

Publication Highlights

Ocean-induced melt triggers glacier retreat in Northwest Greenland

Nov 2018

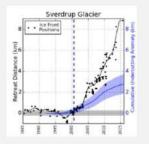
In recent decades, tidewater glaciers in Northwest Greenland have contributed significantly to sea level rise but have also exhibited a complex spatial pattern of retreat that remained unexplained. In this new study, NASA's Gocans Melling Greenland (OMG) data is used in combination with ECCO model outputs to assess the role of the ocean in triggering the retreat of these glaciers. The liming of glacier retreat tolicides with the timing of increased ocean-induced melting of the ice faces above average, which is driven by increases in ocean temperature and surface melt. While glacier retreat is initiated by the ocean, the calving of loebergs remains the dominant process of mass loss at the ice fronts (71%). The speed of retreat varies strongly with the slope of the glacier bed: fast retreats occur in deep fords exposed to warm water and slow retreats in shallow fjords with cold water. These results highlight the dominant role of ice-ocean interactions on the mass balance of the Greenland ice sheet.

Wood, M., Rignot, E., Fenty, I., Menemenlis, D., Millan, R., Mortighem, M., Mouginot, J. & Seroussi, H. (2018). Ocean-induced melt triggers glacier retreat in Northwest Greenland. Geophysical Research Letters, 45(16), 8334-8342. doi: 10.1029/2018GL078024

A New 20-year Ocean Climatology

Nov 2018

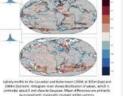
A new 20-year ocean climatology has been created for ocean circulation and climate studies based on the recent ECCO version 4 release 3 ocean state estimate. In comparison to conventional climatologies based on observations alone, the new ECCO climatology accounts for the very great inhomogeneity with which the ocean has been observed. The new climatology includes all conventional variables of a general circulation model over the entire water column and is consistent with the diversity of data available from the global observation system. All basic convservation rules for ocean circulation, including enthalpy and energy, are obeyed to machine precision in the model equations.

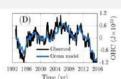

Fukumori, I., P. Heimbach, R. M. Ponte, and C. Wunsch, 2018: A Dynamically Consistent, Multivariable Ocean Climatology, Bull. Am. Meteorol. Soc., 99, 2107– 2128, doi:10.1175/BAMS-D-17-0213.1.

Mechanisms of the recent decadal trend of the North Atlantic Ocean heat content

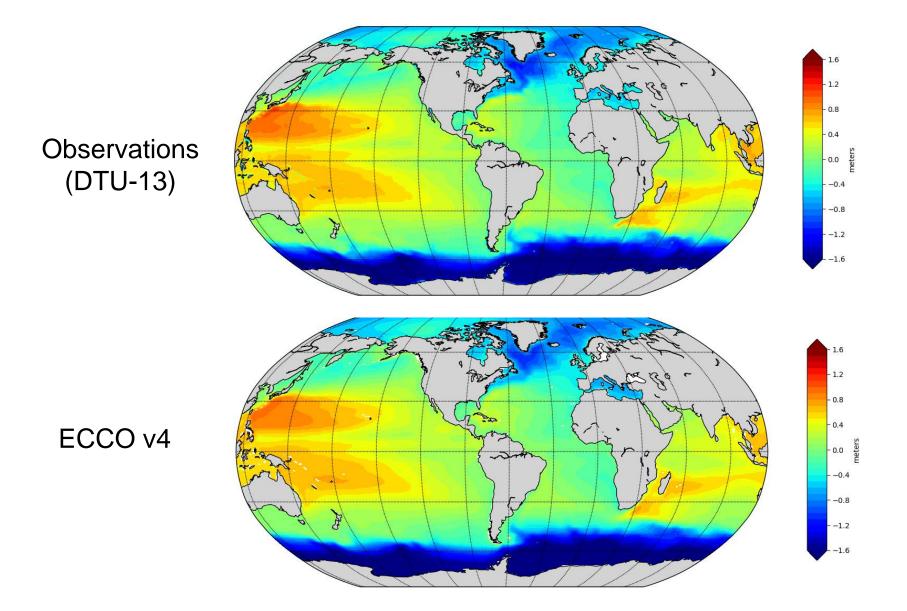
Sept 2017

The subpolar North Atlantic (SPNA) reversed trends in ocean heat content from warming during 1994–2004 to cooling over 2005–2015. ECCO V4/3 reveals that this reversal is the result of anomalous horizontal midlatitude gyre circulation acting on the mean temperature gradient, rather than changes in overturning circulation. Results have implications for decadal predictability.

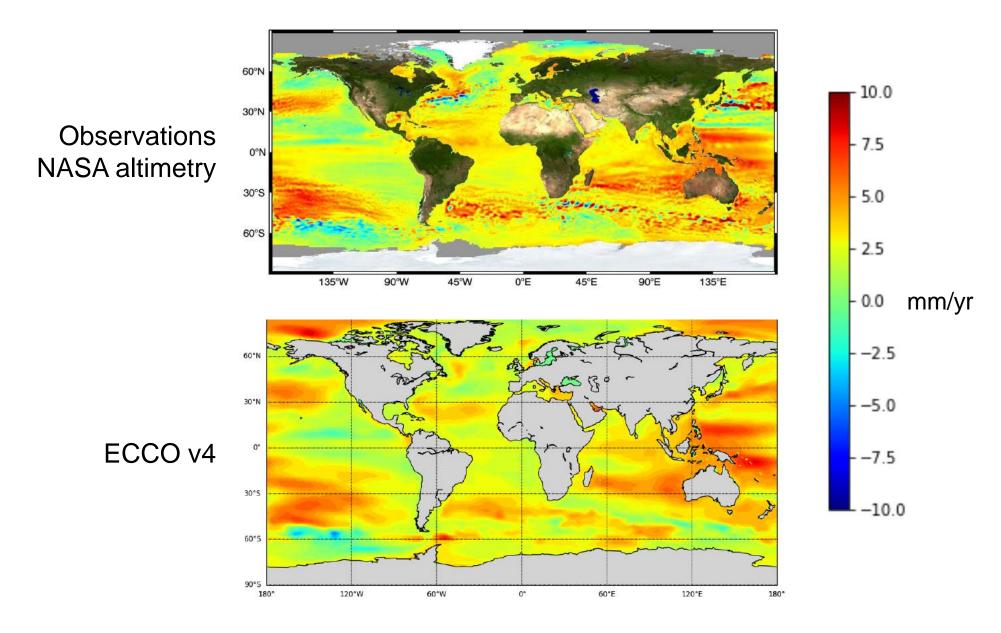

Piecuch, C. G., R. M. Ponte, C. M. Little, M. W. Buckley, and I. Fukumori (2017). Mechanisms underlying recent decadal changes in subpolar North Atlantic Ocean heat content, Journal of Geophysical Research: Oceans, 122(9), 7181-7197, doi:10.1002/2017JC012845.

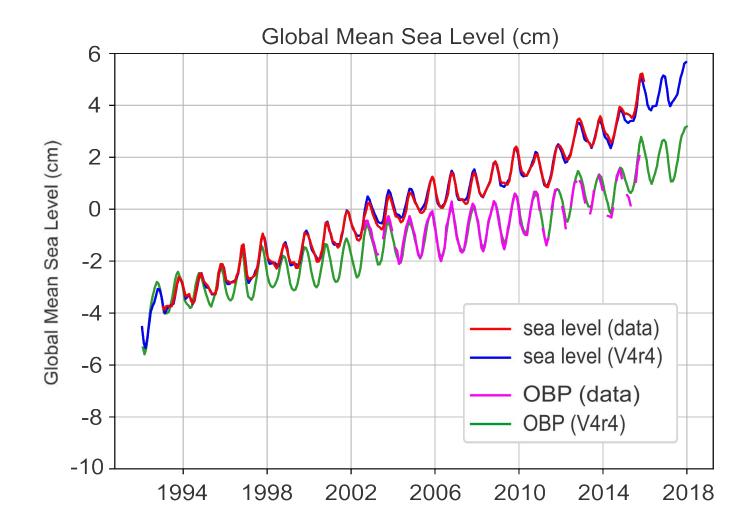


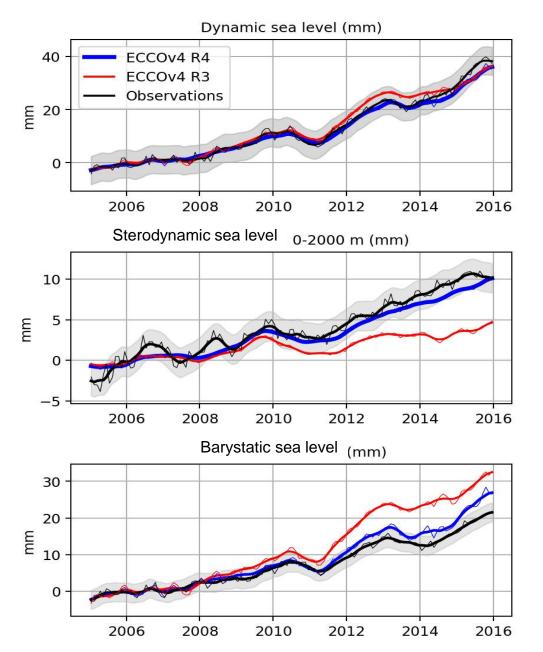
ECCO


ECCO website https://ecco.jpl.nasa.gov

Let us feature your work!



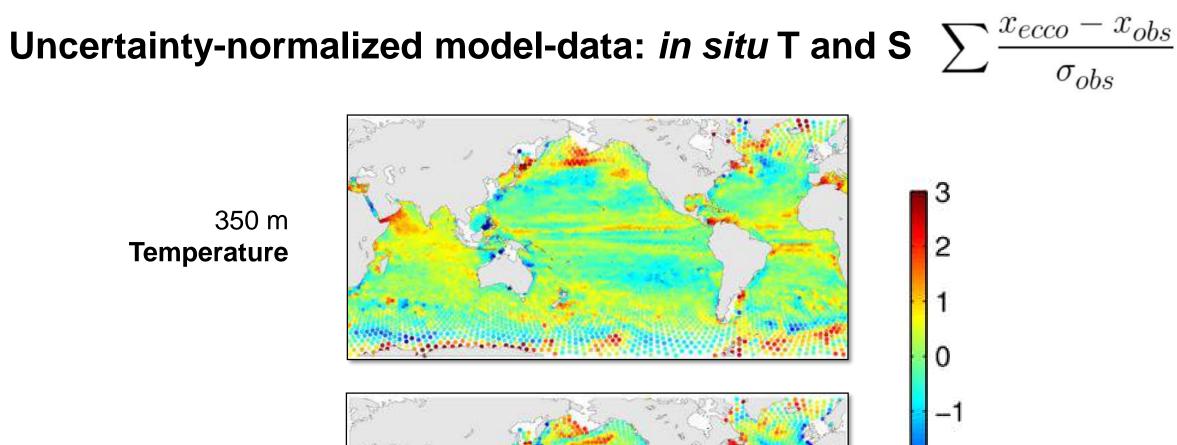

Mean Dynamic Sea Surface Topography


Sea Surface Height Linear Trend: 1992-2017

Global mean dynamic sea level and ocean bottom pressure

Improved Representation of Sea-Level Drivers

Release 4 (blue) and Release 3 (red) both capture **observed** global mean dynamic sea-level variability (black)

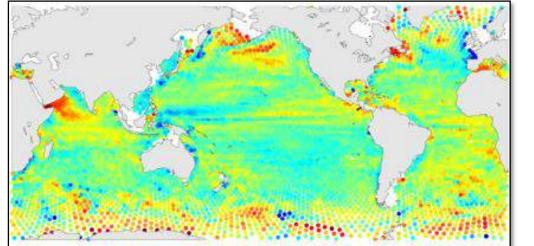

R4 has significantly improved

representation of the global sterodynamic and barystatic sea-level components

- R3 under-represented sterodynamic
 SL and over-represented barystatic SL
- R4 sterodynamic and barystatic terms are now much closer to observations (from Argo and GRACE)

Courtesy of Thomas Frederiske, JPL

and the second second



-2

-3

350 m **Temperature**

ECCO state estimates (**a**) faithfully reproduce a large number of in situ and satellite remote sensing ocean and sea ice observations and (**b**) satisfy the laws of physics and thermodynamics.

This makes them useful for a wide range of science investigations including:

global and regional sea level variability, ocean T and S variability, ocean-cryosphere interactions, Atlantic Meridional Overturning Circulation, carbon cycle, biological cycles, coastal physics, water cycle, geodesy/Earth rotation, El Niño,

+ many others!

ECCO at 2019 OSM (30+)

IS34B-3357

A prototype for remote monitoring of ocean heat content David S. Trossman

PL41A-06

Attribution of Subtropical Versus Subpolar Atlantic Overturning Variability Helen Johnson

OD42A-08

Automatously Sustainable Solution for Big Ocean Science Thomas Huang

OB44G-0762

Climate implication for the poleward migration of marine calcifiers Amos Winter

PS24C-2883

Climatic variability of spice injection in the upper ocean of the SE Pacific during 1992-2016. Yingying Wang

OM42A-10

Cold route versus warm route in the Meridional Overturning Circulation according to ECCO4 Louise Rousselet

PL52A-07

Connections between the large-scale flow and turbulence in the Samoan Passage Jesse Cusack

HE44C-2116

Drivers of Interannual Variability in SE Pacific Subantarctic Mode Water Rachael Sanders

PS52B-02

Dynamical Links between the Decadal Variability of the Oyashio and Kuroshio Extensions Shuiming Chen

PL41A-03

East-west connectivity in the subpolar gyre: impact on Labrador Sea Water properties Yavor Kostov

PL44C-2806

Impact of surface wind and buoyancy forcing on the energetics and transport in a rotating windforced horizontal convection model of a reentrant channel Varvara Zemskova

HE34D-2031

In search of the perfect wave: Variability of marine-terminating glacier response along the Wilkes Land Coast to diverse oceanographic conditions Catherine C Walker

HE53A-05

Interaction Between Antarctic Circumpolar Current Eddies and the Sea Ice Edge: Influence on Sea Ice Extent Scott R Springer

OB24D-0486

Interannual Variability in the Oxygen Budget of the Subpolar North Atlantic Ocean Lauren Moseley

HE42B-03

Interior water-mass variability in the southernhemisphere oceans during the last decade Esther Portela Rodriguez

PC34B-1820

Investigating the Return Pathways of North Atlantic Deep Water Using ECCO4 Reanalysis Data Tatsu Monkman

PL24B-2665

Local winds drive interannual variability of the Gulf Stream North Wall: Results from an adjoint sensitivity analysis Christopher Wolfe

PL34B-2719

Meridional asymmetry in recent Pacific sea surface height trends Fabian Schloesser

HE52A-07

Modeling the ecological and biogeochemical changes of the Arctic Ocean caused by the recent decline of sea-ice Manfredi Manizza

PL14A-2596

On the Interannual Variations of the Chlorophyll-a Concentration in the South Atlantic driven by the MOC Lucas Carnier Casaroli

PL24A-2653

Seasonal and Interannual variability of fw at River-Dominated Ocean Margin Systems from 1992-2018: Results from the global ECCO2 with real-time discharge Yang Feng

CP44D-1370

Studying atmospheric forcing mechanisms for regional sea level changes using ECCO adjoint Hong Zhang

PC21A-06

The Dynamical Proxy Potential of the OSNAP Array Nora Loose

SI14C-1553

Using a Data-assimilative Ocean Biogeochemistry Model (ECCO-Darwin) as a Novel Framework for Evaluating Carbon Mitigation Strategies, Outreach, and Policy Dustin Carroll

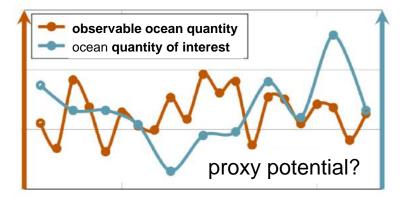
PL24A-2656

Variations in Salinity over the Global Ocean from Multiple Gridded Argo Products Chao Liu

PS34E-3004

Vertical Redistributions of the Global Oceanic Heat and Salt Contents Xinfeng Liang

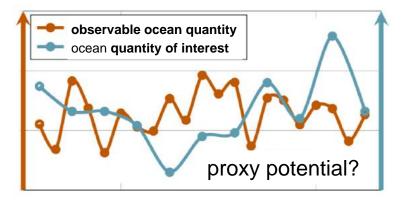
PI31A-07

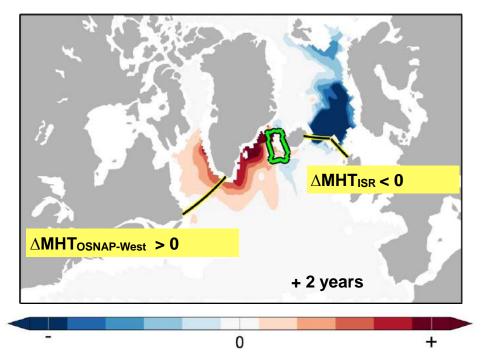

Volume and heat budgets in the coastal California Current System Katherine Dorothy Zaba

Nora Loose et al., submitted (Preprint on ESSOAr)

Science Question:

What are the physical mechanisms and origins of *covariability* in the N. Atlantic?

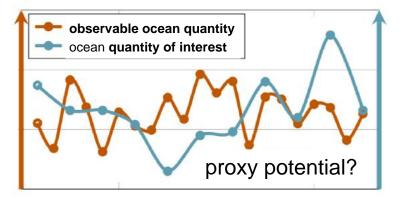

Nora Loose et al., submitted (Preprint on ESSOAr)

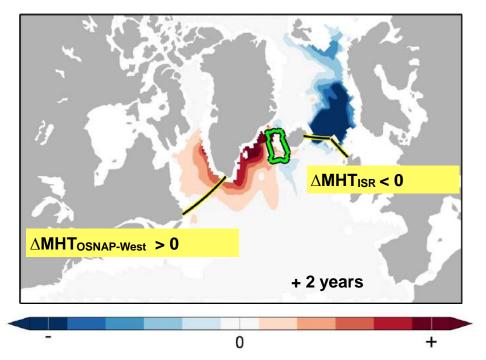

Science Question:

What are the physical mechanisms and origins of *covariability* in the N. Atlantic?

Model perturbation experiment:

Temperature response at 300m to northward wind anomaly $(\Delta \tau_y > 0)$ west of Iceland


Nora Loose et al., submitted (Preprint on ESSOAr)

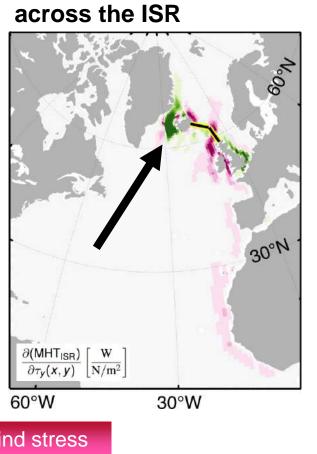

Science Question:

What are the physical mechanisms and origins of *covariability* in the N. Atlantic?

Model perturbation experiment:

Temperature response at 300m to northward wind anomaly $(\Delta \tau_y > 0)$ west of Iceland

Why ECCO?

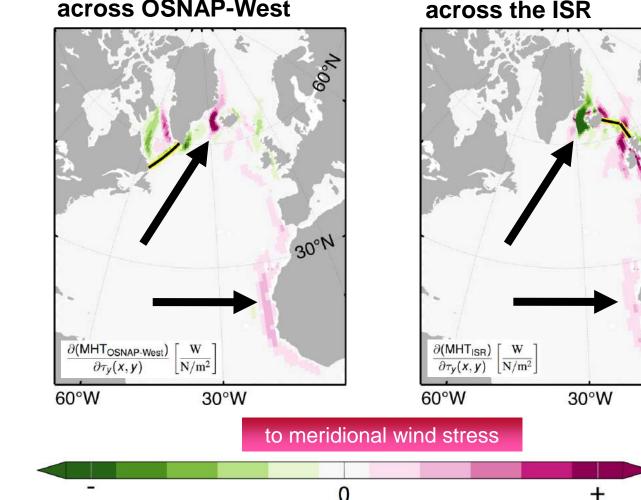

ECCO adjoint modelling framework allows us to identify all sources of physics-based covariability

Nora Loose et al., submitted (Preprint on ESSOAr)

Sensitivity of heat transport

across OSNAP-West 60°1 30°N $\partial(MHT_{OSNAP-West})$ W $\partial(MHT_{ISR}) \mid W$ N/m^2 N/m² $\partial \tau_{\mathbf{y}}(\mathbf{x},\mathbf{y})$ $\partial \tau_{v}(x,y)$ 60°W 30°W 60°W to meridional wind stress

0


+

Nora Loose et al., submitted (Preprint on ESSOAr)

Sensitivity of heat transport

across OSNAP-West

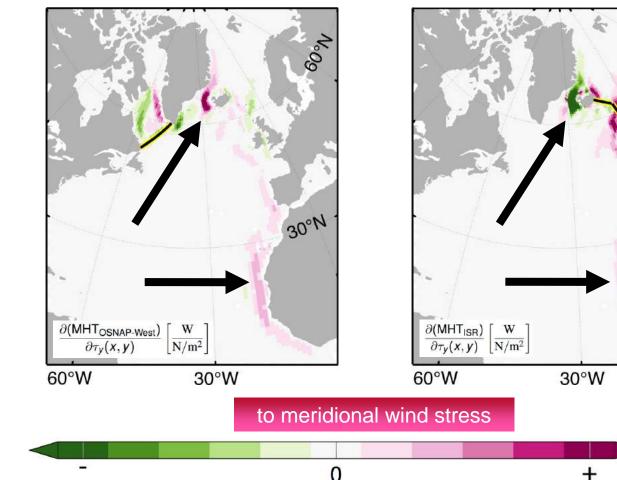
Key Result:

60°1

30°N

Wind along northern & eastern boundaries of the Atlantic are important sources of covariability in the North Atlantic

Nora Loose et al., submitted (Preprint on ESSOAr)


Sensitivity of heat transport

across the ISR

600

30°N

across OSNAP-West

Key Result:

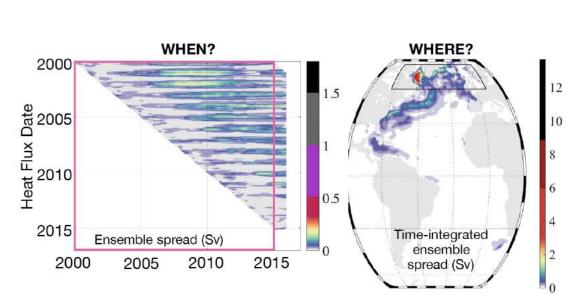
Wind along northern & eastern boundaries of the Atlantic are important sources of covariability in the North Atlantic

Next Steps:

Use ECCO for physicsdriven observing system design

Exploring Atmospheric Origins of North Atlantic - MOC Variability & Uncertainty

1995


Helen Pillar et al. 2018

Science Question:

How does atmospheric reanalysis uncertainty impact the simulated MOC at the RAPID Array?

Why ECCO?

ECCO's adjoint-based sensitivities allow critical forcing uncertainty to be pinpointed in space & time.

2005

Adjoint-based reconstruction of surface heat flux-driven ΔMOC_{RAPID}

NCEPII/ NCEPI/ ERA-INT/ JRA55/ 20CR

2010

2018

2015

Key Result:

MOC spread dominated by uncertain SPG wintertime heat flux;

Supports importance of initialized LSW anomalies for skillful decadal prediction.

2000

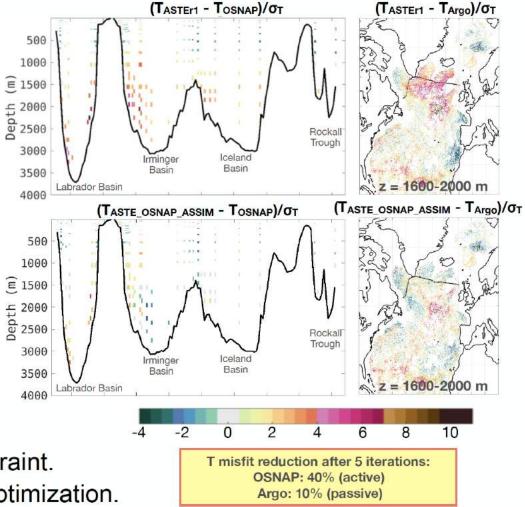
Influence of OSNAP Mooring Data in the Arctic and Subpolar Gyre State Estimate

Helen Pillar et al. [PL41A-07]

Science Question:

What new information does OSNAP T & S data add to the existing observing system?

Why ECCO?


New data is placed in a coherent framework with existing observational constraints.

Key Result:

OSNAP drives widespread bias reduction, despite extensive prior optimization (inc. Argo).

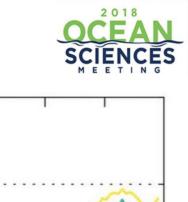
Next Steps:

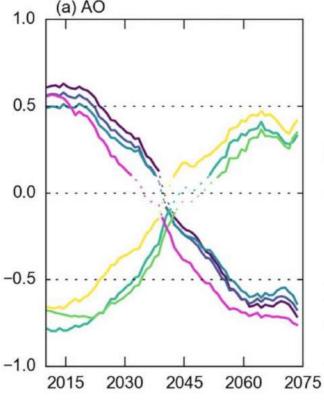
(1) Explore MHT/MFT/MVT constraint.(2) OSNAP/RAPID/MOVE joint optimization.

Arctic sea ice is thinning but growing back faster?

Motivation:

Warm winter, thin ice?¹ Warm Arctic, Increased Winter Sea Ice Growth?²Arctic sea-ice variability is primarily driven by atmospheric temperature fluctuations.³

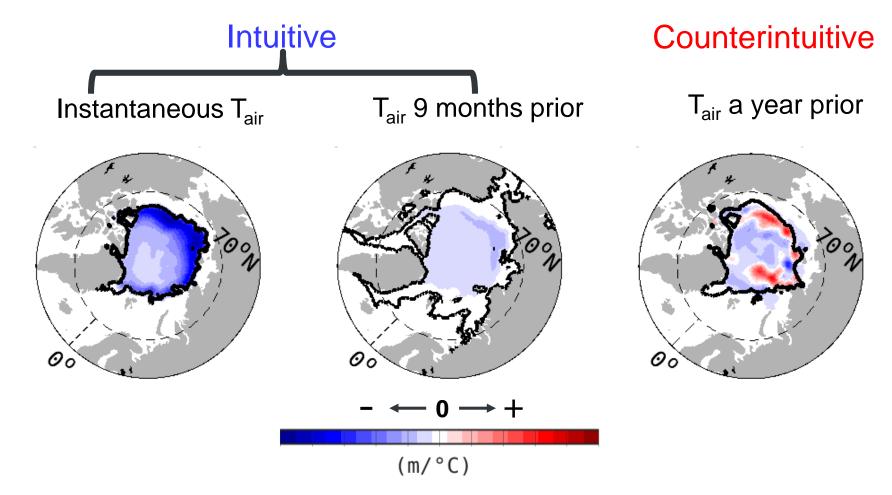

Science Question:


Can we connect Sea ice volume to Air temperature in a causal way informed by physics in a data constrained coupled ocean-sea ice model?

Why Ecco:

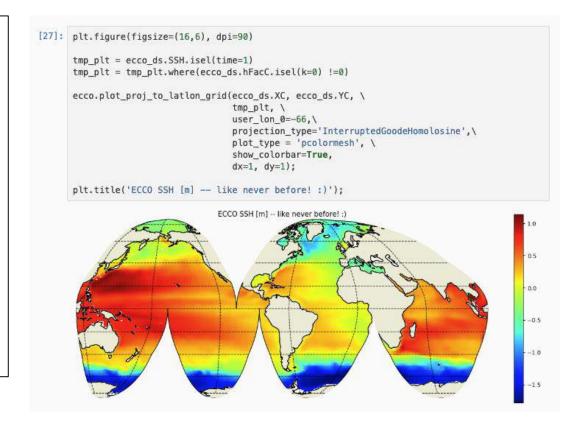
Physical relation (derivative) of, e.g., ice volume to Tair, $\partial Vol/\partial Tair$), ECCO's adjoint is a computationally tractable method to get these sensitivities.

1-Stroeve, et al. (2018). Warm winter, thin ice? The Cryosphere 2-Petty et. al. (2018). Warm arctic, increased winter sea ice growth? GRL 3-Olonscheck et. al. (2019). Arctic sea-ice variability is primarily driven by atmospheric temperature fluctuations. Nature Geoscience



Correlation between October T_{air} and the winter ice growth in CESM-LE²

Adjoint sensitivities of September sea ice volume to air temperature


HE53A-02 - Enhanced Arctic Sea-Ice Growth Driven by Atmospheric Warming; A Key Role for Snow Friday 14:15 @ 1A

ecco_v4_py Python Package

ecco_v4_py is a Python package for reading, analyzing, and plotting ECCO v4 state estimate fields.

New capabilities in 2019:

- Global mean sea level anomalies
- Global and regional heat, salt, and volume transports and budgets
- Heat, salt, and volume transport across arbitrary sections (e.g., GO-SHIP lines, OSNAP arrays)
- Overturning stream functions
- More plotting examples

https://github.com/ECCO-GROUP/ECCOv4-py

ECCO v4 Python Tutorial

ECCO Version 4 Python Tutorial

latest

Search docs

GETTING STARTED

The ECCO Ocean and Sea-Ice State Estimate

ECCO v4 state estimate ocean, sea-ice, and atmosphere fields

Python and Python Packages

How to get the ECCO v4 State Estimate

Tutorial Overview

TUTORIAL: INPUT/OUTPUT

The Dataset and DataArray objects used in the ECCOv4 Python package.

A better method for loading ECCOv4 NetCDF tile files

Loading all 13 lat-lon-cap NetCDF tile files at once

Combining multiple Datasets

Saving Datasets and DataArrays to NetCDF

TUTORIAL: BASIC OPERATIONS

Accessing and Subsetting Variables

Docs » Welcome to the ECCO Version 4 Tutorial O Edit on GitHub

Welcome to the ECCO Version 4 Tutorial

This website contains a set of tutorials about how to use the ECCO Central Production Version 4 (ECCO v4) global ocean and sea-ice state estimate. The tutorials were written in Python and make use of the ecco_v4_py Python library, a library written specifically for loading, plotting, and analyzing ECCO v4 state estimate fields.

Additional Resources

The ECCO v4 state estimate is the output of a free-running simulation of a global ca. 1-degree configuration of the MITgcm. Prior to public release, the model output files model are assembled into NetCDF files. If you would like to work directly with the flat binary "MDS" files provided by the model then take a look at the xmitgcm Python package. The xgcm Python package provides tools for operating on model output fields loaded with xmitgcm. If you wish to analyze the MITgcm model output using Matlab then we strongly recommend the extensive set of tools provided by the gcmfaces toolbox.

The ecco_v4_py package used in this tutorial was inspired by both the xmitgcm package and gcmfaces toolbox.

Getting Started

- The ECCO Ocean and Sea-Ice State Estimate
- ECCO v4 state estimate ocean, sea-ice, and atmosphere fields
- Python and Python Packages
- How to get the ECCO v4 State Estimate
- Tutorial Overview

Computing transports in ECCOv4r4 with ECCOv4-py

See a static notebook here

https://tinyurl.com/rdn3qrn

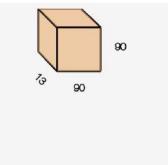
Read model grid and variables: as NetCDF files downloaded from the ecco drive

In [4]: %%time

ds = xr.open_mfdataset(glob(f'{download_dir}/nctiles_monthly/*/*/*.nc'))

CPU times: user 50.5 s, sys: 10.6 s, total: 1min 1s Wall time: 2min 20s

In [5]: ds.data_vars

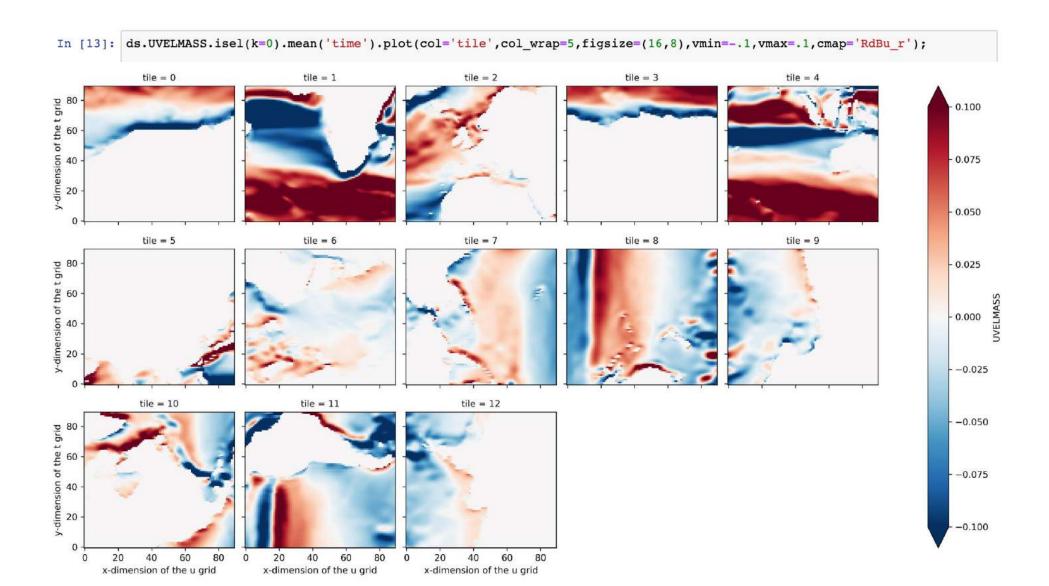

Out[5]: Data variables:

```
ADVx_TH (time, k, tile, j, i_g) float32 dask.array<chunksize=(1, 50, 13, 90, 90), meta=np.ndarray>
ADVy_TH (time, k, tile, j_g, i) float32 dask.array<chunksize=(1, 50, 13, 90, 90), meta=np.ndarray>
DFxE_TH (time, k, tile, j, i_g) float32 dask.array<chunksize=(1, 50, 13, 90, 90), meta=np.ndarray>
DFyE_TH (time, k, tile, j_g, i) float32 dask.array<chunksize=(1, 50, 13, 90, 90), meta=np.ndarray>
UVELMASS (time, k, tile, j, i_g) float32 dask.array<chunksize=(1, 50, 13, 90, 90), meta=np.ndarray>
VVELMASS (time, k, tile, j g, i) float32 dask.array<chunksize=(1, 50, 13, 90, 90), meta=np.ndarray>
```

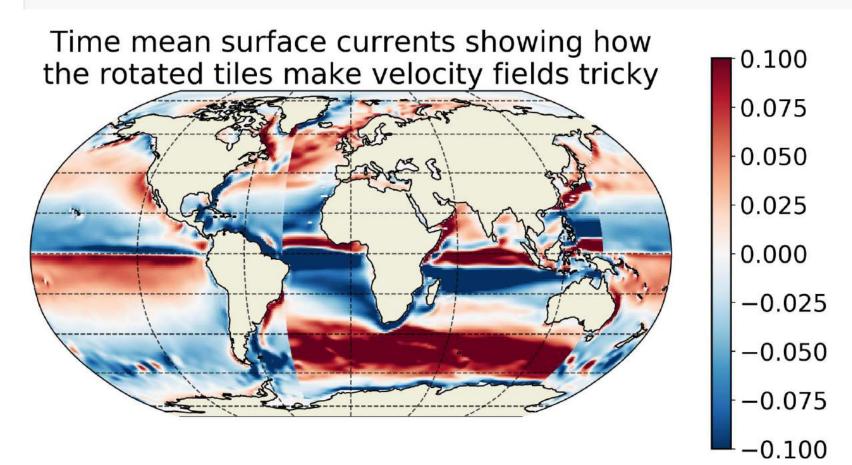
In [6]: ds.UVELMASS.data

Out[6]:

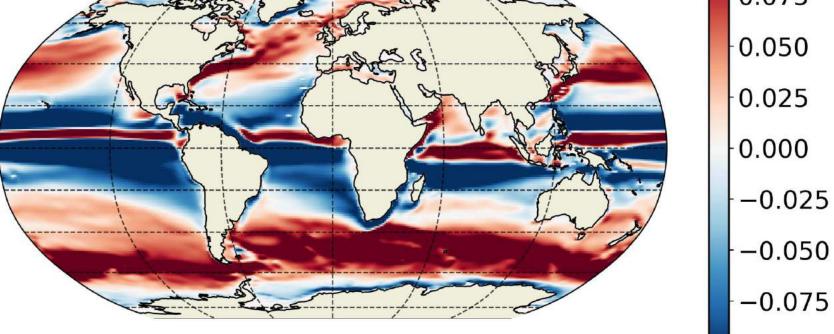
	Array	Chunk			
Bytes	6.57 GB	21.06 MB		312	13
Shape	(312, 50, 13, 90, 90)	(1, 50, 13, 90, 90)			0
Count	1248 Tasks	312 Chunks			
Туре	float32	numpy.ndarray	50		


Speed things up on an HPC cluster with dark

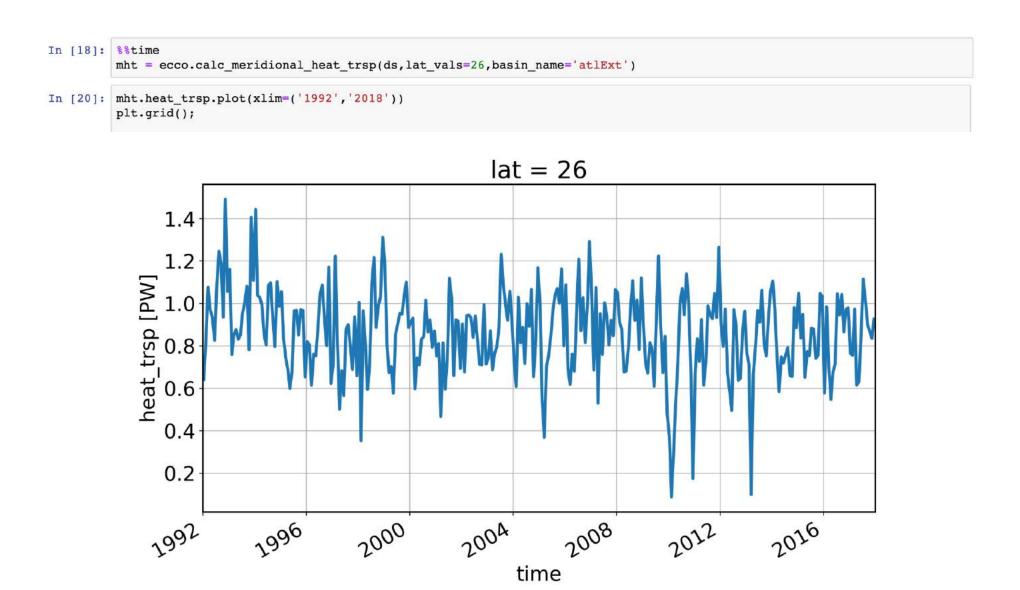
This notebook is running on frontera, a cutting edge supercomputer at the Texas Advanced Computing Center. Thanks to TACC for the computing resources!


In [11]:	<pre>client = Client(n_worke</pre>	ers=56)			
In [12]:	client				
Out[12]:	Client Scheduler: tcp://127.0.0.1:42440	Cluster Workers: 56 Cores: 56 Memory: 200.62 GB			

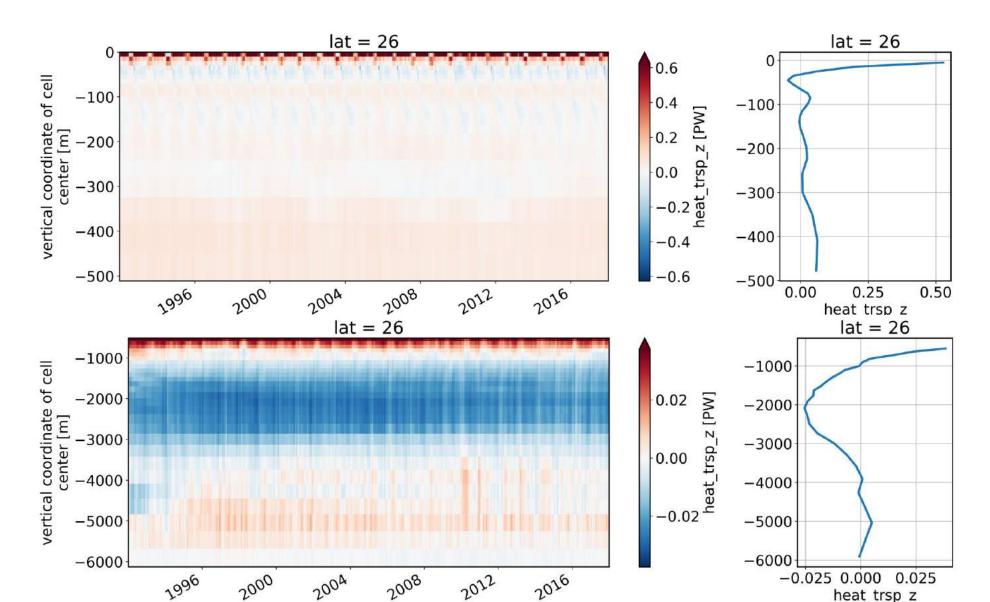
The LLC grid is somewhat complicated


One goal of this package is to make plotting and grid operations standardized and transparent

- In [15]: plt.rcParams.update({'figure.figsize':(12,6),'font.size':20,'axes.linewidth':1.5,'lines.linewidth':3});
- In [18]: ecco.plot_proj_to_latlon_grid(ds.XG,ds.YC,ds.UVELMASS.isel(k=0).mean('time'),show_colorbar=True,cmin=-.1,cmax=.1);
 plt.title('Time mean surface currents showing how\nthe rotated tiles make velocity fields tricky');

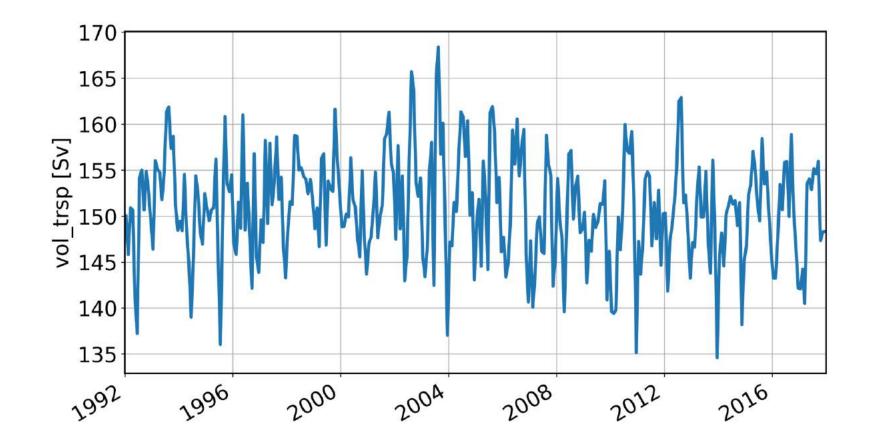

Get U and V as an oceanographer would expect

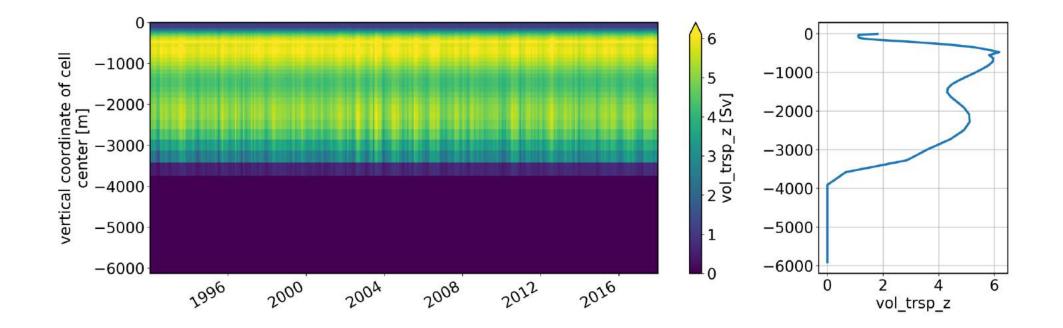
In [16]: Ntime
uvel,vvel = ecco.vector_calc.UEVNfromUXVY(ds.UVELMASS,ds.VVELMASS,ds)
CPU times: user 1.96 s, sys: 50.8 ms, total: 2.01 s
Wall time: 2 s
In [*]: ecco.plot_proj_to_latlon_grid(ds.XG,ds.YC,uvel.isel(k=0).mean('time'),show_colorbar=True,cmin=-.1,cmax=.1);
0.100
0.075
0.050



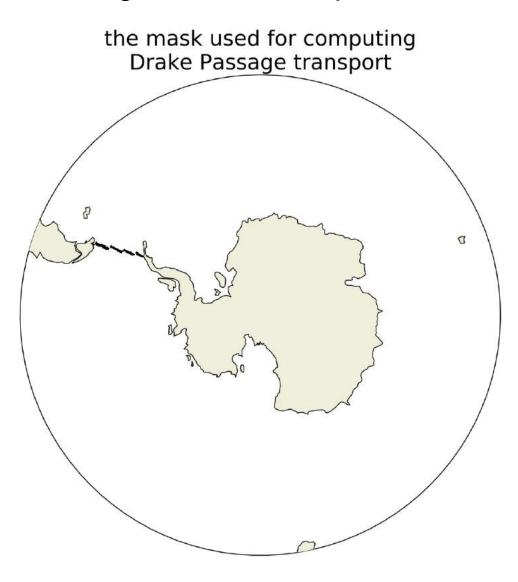
-0.100

Compute meridional heat transport across 26N in the Atlantic


Compute meridional heat transport across 26N in the Atlantic


Compute Drake Passage volume transport

In [24]: %%time
easy as: ecco.calc_section_vol_trsp(ds, 'Drake Passage')
or:
dp = ecco.calc_section_vol_trsp(ds,pt1=[-68,-54],pt2=[-63,-66])

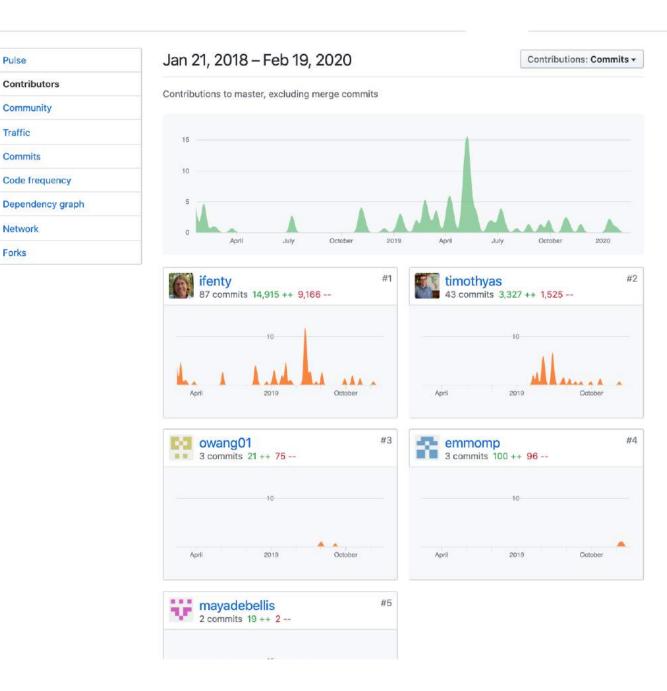

In [26]: dp.vol_trsp.plot(xlim=['1992','2018'])
 plt.grid();

Compute Drake Passage volume transport

Compute Drake Passage volume transport

Shoutouts

This is essentially an adaptation of gcmfaces, for which we thank Gael Forget.

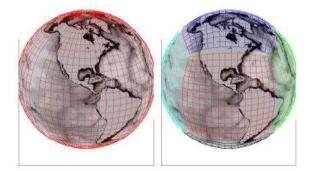

Pulse

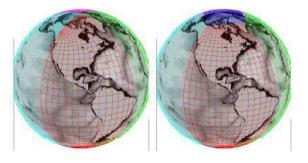
Traffic

Forks

This wraps nicely with existing Pangeo infrastructure

- * xarray (and dask) *
- xgcm * xmitgcm
- Thanks to Ryan Abernathey for collaboration




gcmfaces: Matlab/Octave Toolbox

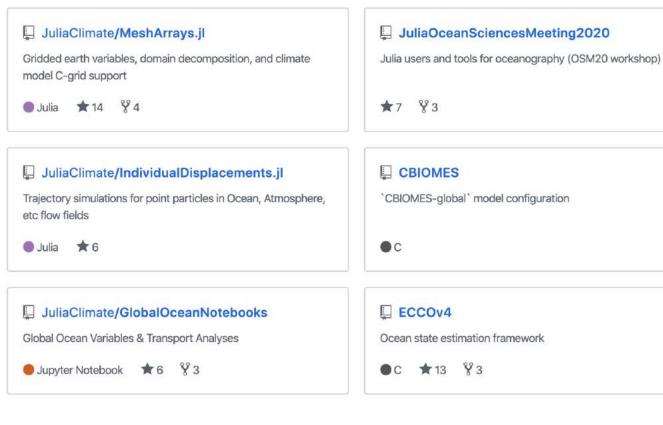
gcmfaces is a Matlab/Octave toolbox to handle gridded Earth variables as sets of connected arrays.

Its object-oriented approach allows users to write generic, compact analysis codes that readily become applicable to a wide variety of grids

Natively handles the lat-lon-cap grid used in ECCO version 4.

Gael Forget gaelforget

Researches oceans and climate. MIT (Massachusetts Institute of ... Cambridge, MA, USA http://gaelforget.net/


PRO
 GitHub Sponsor
 Block or report user

Overview Repositories 48 Projects 0

ts 0 Stars 88

Followers 36 Following 6

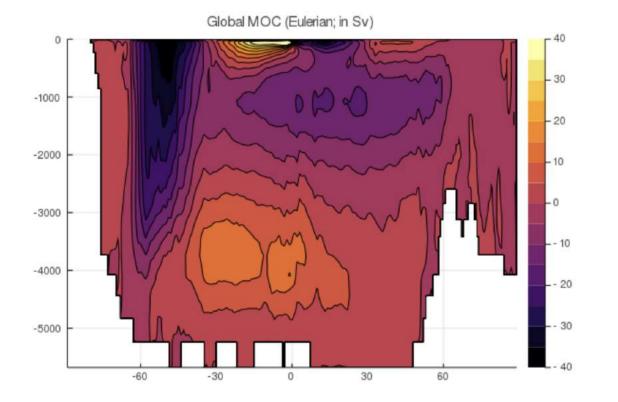
Pinned

Sponsoring

View all

724 contributions in the last year

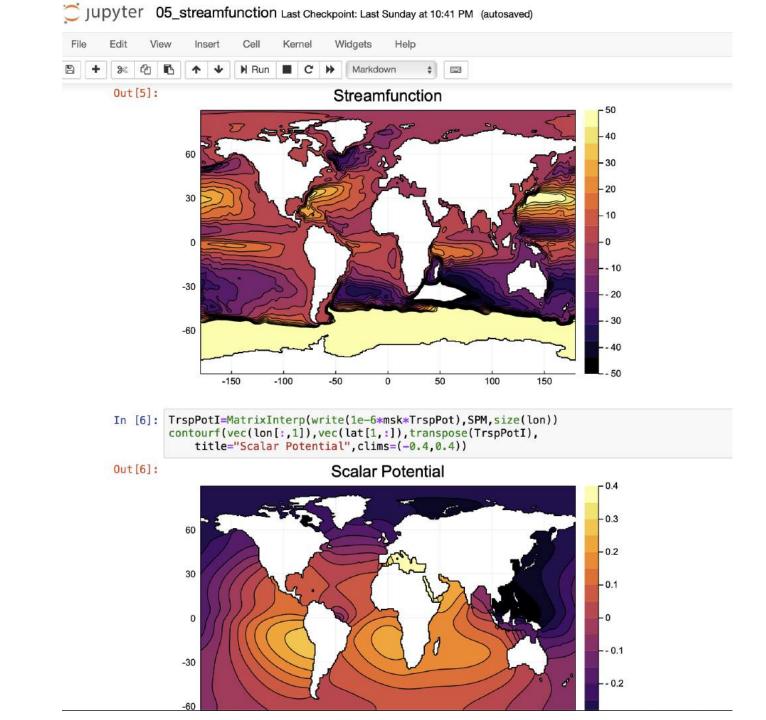
Julia Ocean Sciences Meeting 2020 workshop

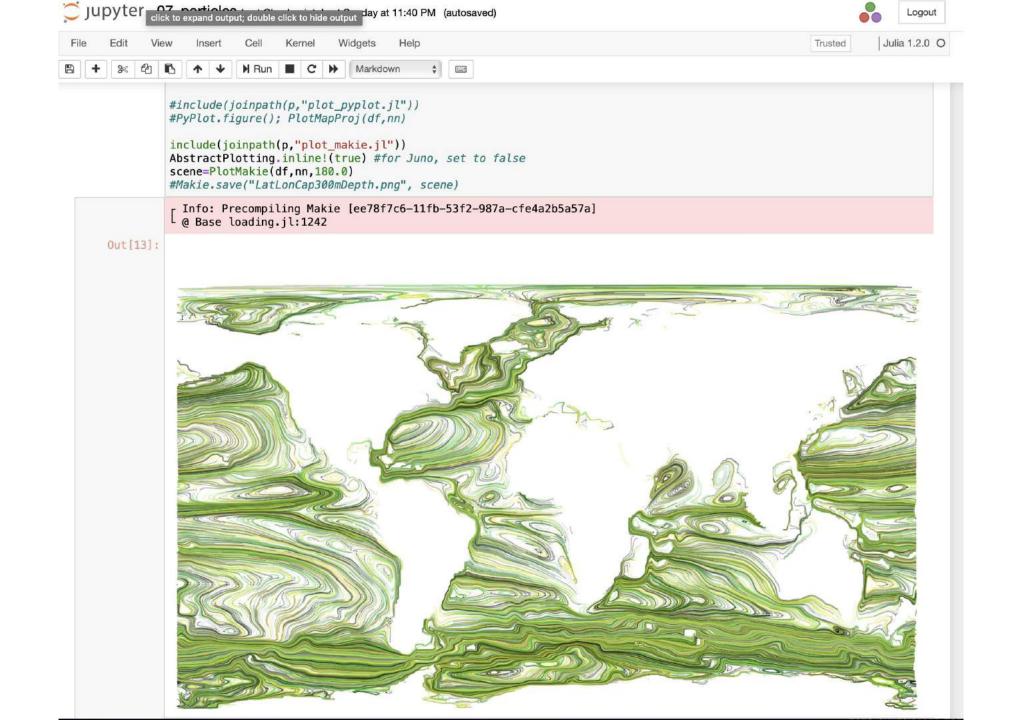

Practical information : see https://agu.confex.com/agu/osm20/meetingapp.cgi/Session/92105

- workshop title : Julia (language) users and tools for oceanography
- time : Tuesday, 18 February 2020 @ 12:45 13:45
- location : Marriott Marquis Point Loma, L1
- weblink : https://bluejeans.com/675644738/2261

Workshop description

below is the original workshop proposal


There has been a visible uptick in oceanography and climate applications of the Julia language since it reached the v1.0 milestone last year. The growth and appeal for this language were recently highlighted by Nature magazine. It seems very timely to offer this rapidly growing community of open source developers and users an opportunity to meet in person, advertise their recent efforts, and engage with the oceanographic community at large. A tentative agenda for this workshop would include: a brief general presentation of Julia, a survey of existing efforts, a hackathon-type session with both experienced and new users interacting, and open-ended discussion time.



1. Ocean Transports

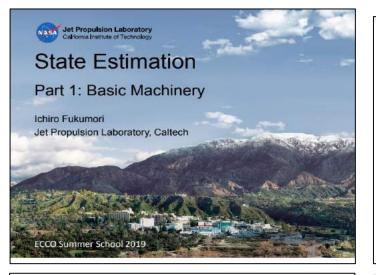
The following notebooks demonstrate various standard computations related to ocean transports.

- 04_transports.ipynb uses TransportThrough() and LatCircles() to compute seawater transports between latitude bands. It plots interpolated results over the Global Ocean.
- 05_streamfunction.ipynb uses ScalarPotential() and VectorPotential() to compute horizontal streamfunction along with the divergent transport component.
- 06_overturning.ipynb computes meridional overturning streamfunctions (the MOC).
- 07_particles.ipynb computes particle trajectories that follow a gridded flow field.

2019 ECCO Summer School

https://www.eccosummerschool.org/

Topics Covered


- 1. State estimation
- 2. Ocean dynamics & variability
- 3. Ocean modeling
- 4. Observational oceanography: in-situ, ARGO floats, satellites, cryosphere
- 5. Climate variability
- 6. Decadal survey
- 7.General Oean circulation
- 8. Tracer budgets
- 9. High resolution modeling
- 10. Physics of sea level
- 11. Air-sea fluxes & water mass

- 12. Sea ice
- 13. Global salt budgets & water cycle
- 14. Ecology & ECCO Darwin
- 15. Coupled modeling & assimilation
- 16. Ice-ocean interactions
- 17. Regional state estimates
- 18. Ocean biochemistry
- 19. Ocean mixing
- 20. Algorithmic differentiation (AD)
- 21. Adjoint sensitivities
- 22. Budgets
- + others

2019 ECCO Summer School

https://www.eccosummerschool.org/

All lecture materials and videos freely available

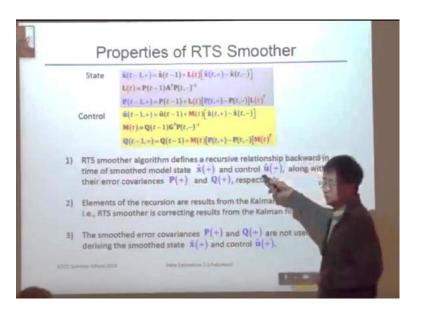
The ends and means of "data assimilation"

Patrick Heimbach

Oden Institute for Computational Engineering and Sciences Jackson School of Geosciences University of Texas at Austin

> Estimating the Circulation and Climate of the Ocean http://ecco-group.org

Observational Oceanography II: *in-situ* Process Studies

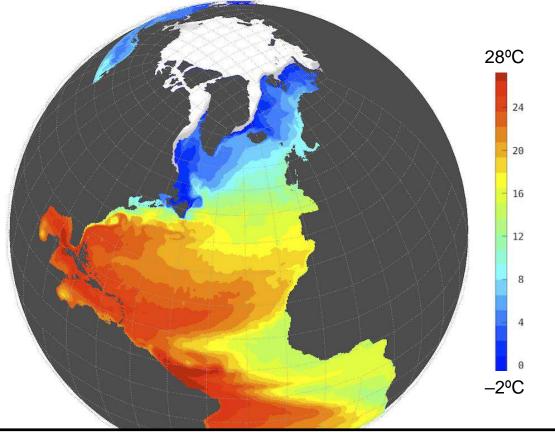

+ Goals for the next decade

Meghan Cronin NOAA Pacific Marine Environmental Laboratory

With slides from Mike Patterson, Director of US CLIVAR

ECCO Summer School 2019 * Friday Harbor Laboratories

Ichiro Fukumori lecturing at the 2019 ECCO Summer School


The Arctic Subpolar gyre sTate Estimate (ASTE)

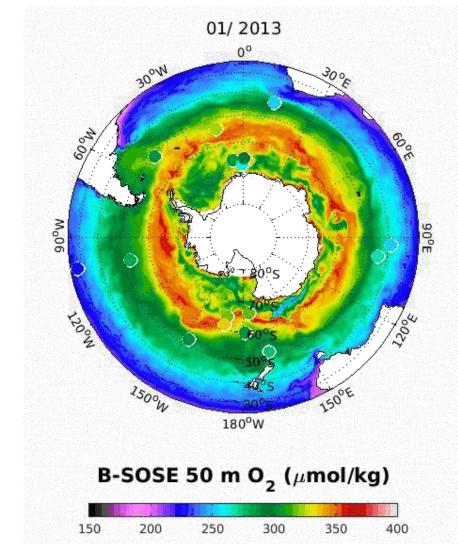
An Ngyuen and others, U. of Texas, Austin

ASTE is a regional state estimate aimed at providing better representation of Arctic sea ice and ocean processes.

Main Features

- 2002-2017 (ICESat, GRACE, ITP)
- ~1/3 degree resolution
- Improved Arctic Ocean circulation and water mass representation
- Improved transport across Arctic and Nordic Seas gateways
- Improved bathymetry to capture transports through important gateways
- Currently adding Greenland glacier melt runoff and improving sea-ice representation

https://web.corral.tacc.utexas.edu/OceanProjects/ASTE/


Arianne Verdy and Matthew Mazloff, SIO

A regional biogeochemical state estimate to advance understanding of the variability and sensitivity of ocean fertility, ocean acidification, carbon content, and oxygen minimum zones in the S. Ocean.

Main Features

- 2008-2012 and 2013-2018
- 1/3 degree resolution
- First ECCO family state estimate to use Biogeochemical Argo data (pH, nitrate, oxygen, bio-optics)
- Biogeochemical model includes micronutrients, macronutrients, alkalinity, pH, carbon, & oxygen

http://sose.ucsd.edu/

Floats superimposed on B-SOSE

ECCO Future Directions

Modeling and Estimation	Ice shelves and tidewater glaciers parameterizations	
	New cryosphere observations (e.g., sea ice thickness), ice shelf basal ocean melt rates	
	New controls (e.g., time-variable ocean mixing parameters)	
	Ocean Biogeochemistry	
	Higher spatial resolution 1/3° 10–25km grid (llc270)	
Modeling Tools	Online passive tracer tool	
	Open-source algorithmic differentiation and generic adjoint	
Community	Facing Big Data Challenges: Data distribution, analysis	
	Annual ECCO Meeting and Community Workshop	
	20 th year Symposium 2020	
	20 th year Special Issue 2020	

(1) What is ECCO (2) What is Provided (3) Comparison to Obs, (4) Example Applications, (5) Resources, (6) Regional ECCO, (7) Future Directions

ECCO Future Directions

Modeling and Estimation	Ice shelves and tidewater glaciers parameterizations
	New cryosphere observations (e.g., sea ice thickness), ice shelf basal ocean melt rates
	New controls (e.g., time-variable ocean mixing parameters)
	Ocean Biogeochemistry
	Higher spatial resolution 1/3° 10–25km grid (llc270)
Modeling Tools	Online passive tracer tool
	Open-source algorithmic differentiation and generic adjoint
Community	Facing Big Data Challenges: Data distribution, analysis
	Annual ECCO Meeting and Community Workshop
	20 th year Symposium 2020
	20 th year Special Issue 2020

(1) What is ECCO (2) What is Provided (3) Comparison to Obs, (4) Example Applications, (5) Resources, (6) Regional ECCO, (7) Future Directions

Facing Big Data Challenges

ECCO Data Distribution // Data Volumes

ECCO ∨ 4 IIc90	0.25 Tb	1 deg, 50 levels
ECCO v 5 IIc270	3 Tb	1/3 deg, 50 levels
ECCO v 6 IIc1080	80 Tb	1/12 deg, 90 levels

- How can we efficiently distribute ECCO products to researchers?
- How can we facilitate the scientific analysis of ECCO products?

Facing Big Data Challenges

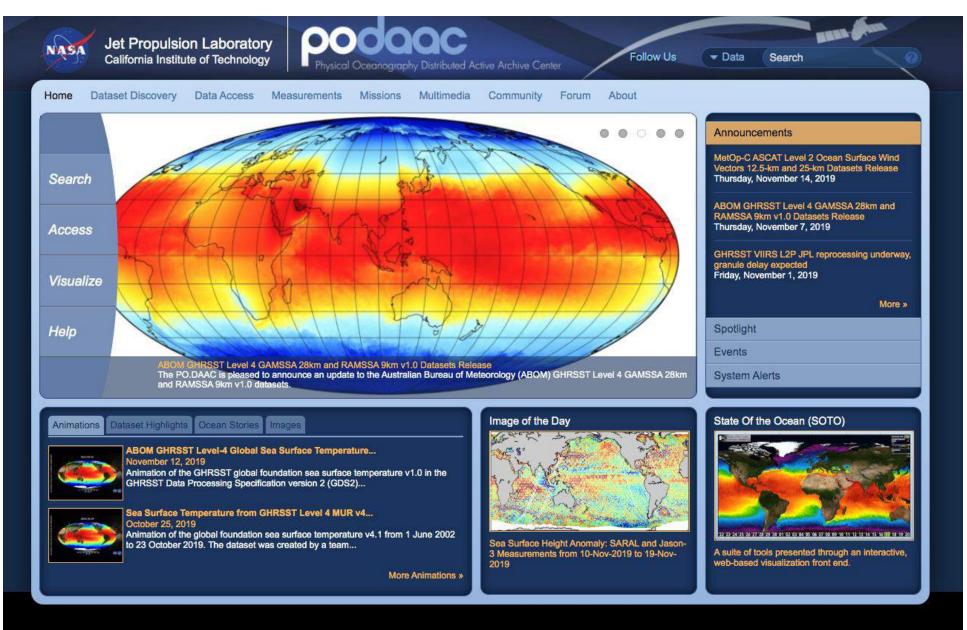
ECCO Reproducibility // Computational Costs

ECCO v4 IIc90	96 CPUs	12 hr	
ECCO v5 llc270	787 CPUs	36 hr	
ECCO v6 llc1080	10821 CPUs	28 d	(without tides)
ECCO v6 llc1080	10821 CPUs	75 d	(with tides)

 How can we ensure reproducibility for researchers without access to large, dedicated supercomputer resources?

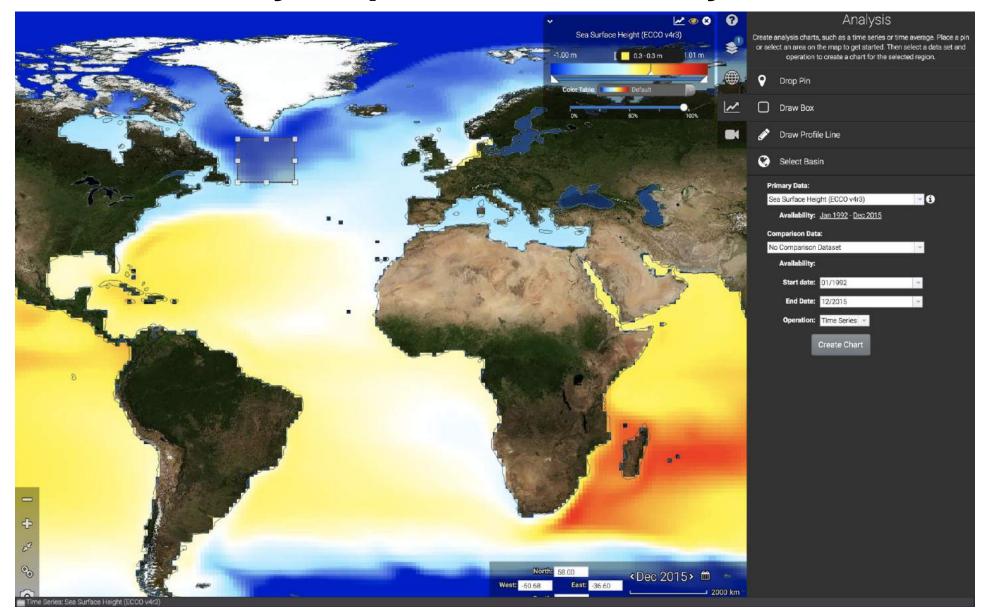
Facing Big Data Challenges

- ECCO Data Distribution and Analysis
- ECCO Reproducibility

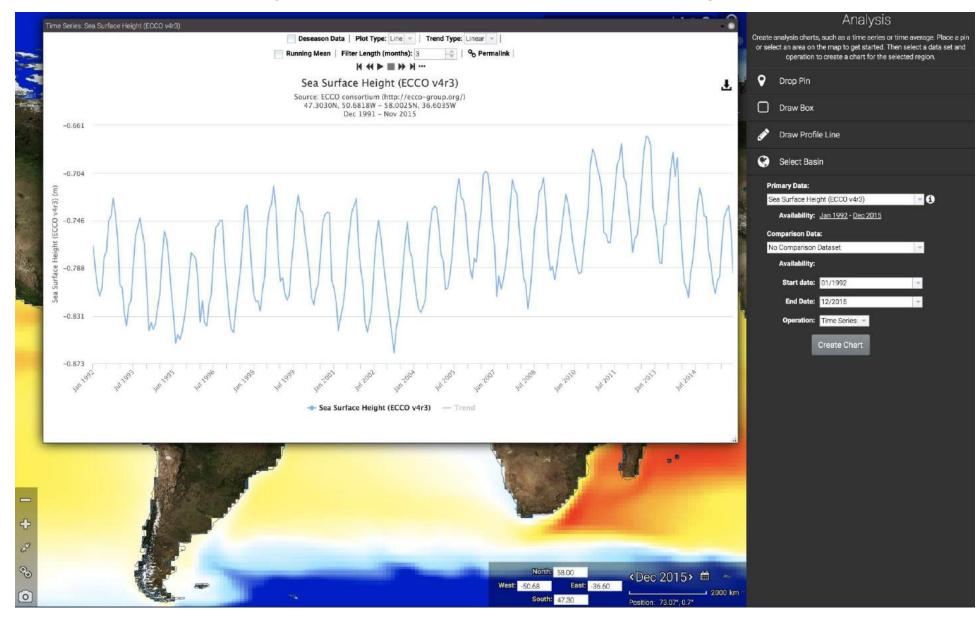

Data Access and the ECCO Ocean and Ice State Estimate

NASA's Advancing Collaborative Connections for Earth System

Science (ACCESS) Program


Advancing Collaborative Connections for Earth System Science

ECCO data distribution via NASA PO.DAAC



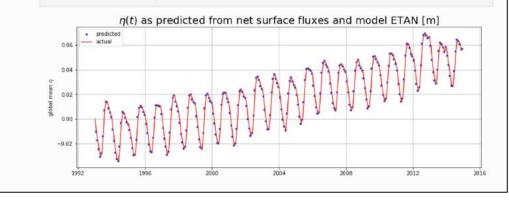
ECCO analysis portal, Data Analysis Tool

ECCO analysis portal, Data Analysis Tool

ECCO analysis portal: ACCESS vis Jupyter NB

The predicted η time series is calculated by time integrating :math: `G_{surface fluxes}`. This time series is compared against the actual η time series anomaly relative to the $\eta(t = 0)$.

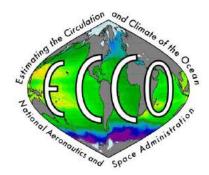
[57]: area_masked = ecco_grid.rA.where(ecco_grid.maskC.isel(k=0) == 1)


```
dETA_per_month_predicted_from_surf_fluxes = \
  ((G_surf_fluxes * area_masked).sum(dim=('i','j','tile')) /
    area_masked.sum())*secs_per_month
```

ETA_predicted_by_surf_fluxes = \
 np.cumsum(dETA_per_month_predicted_from_surf_fluxes.values)

ETA_from_ETAN =
 (ecco_monthly_snaps.ETAN * area_masked).sum(dim=('i','j','tile')) /
 area_masked.sum()

plotting
plt.figure(figsize=(14,5));


plt.plot(dETA_per_month_predicted_from_surf_fluxes.time, \
 ETA_predicted_by_surf_fluxes,'b.')
plt.plot(ETA_from_ETAN.time.values, ETA_from_ETAN-ETA_from_ETAN[0],'r-')
plt.grid()
plt.ylabel('global mean \$\eta\$');
plt.legend(('predicted', 'actual'));
plt.title('\$\eta(t)\$ as predicted from net surface fluxes and model ETAN [m]',
 fontsize=20);

Online portal that allows users to analyze ECCO products "on the cloud" using Jupyter Notebooks

ECCO files stored remotely in cloud (e.g., AWS)

Calculations involving ECCO datasets performed "on the cloud", results (small) returned to user.

ECCO TOWN HALL

More information, links to ECCO products

https://ecco.jpl.nasa.gov http://eccosummerschool.org http://podaac.jpl.nasa.gov/

Tutorial & Tools

http://ecco-v4-python-tutorial.readthedocs.io http://eccov4.readthedocs.io

Getting support

mailto: ecco-support@mit.edu