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Scope of Lecture

State estimation (data assimilation) is about combining
observations and models, but what is it actually doing?

e Howisitdone?

e What goodisit?

* What use does it have?

e Arethere caveats?

* What research issues are there?

e How best to use state estimation?
e Where to turn to to learn more?
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What is State Estimation?

State estimation (data assimilation) is
a means to analyze observations using models,
equivalent to fitting a curve through data.

Purpose of curve fitting

% data ~
g ° * Filter out noise in the data to more
v accurately describe the system and to
© gain insight into underlying processes
- * Interpolate/extrapolate the data to
aspects not directly measured,
space, time, or

some parameter * Test theories against observations.
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- * Interpolate/extrapolate the data to
aspects not directly measured,
space, time, or

some parameter * Test theories against observations.
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Overview of the Lectures

1. State estimation is an inverse problem,

2. Estimation theory provides a framework to
solving the problem,

3. Approximations and assumptions dictate what
is being solved.
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Lecture Outline

1. Basic Machinery (this lecture)
The mathematical problem (inverse problem), Linear
inverse methods, Singular value decomposition (SVD),
Rank deficiency, Gauss-Markov theorem, Minimum
variance estimate, Least-squares,

2. Methods of state estimation (tomorrow)

Kalman filter, Rauch-Tung-Striebel smoother,
Adjoint method,

3. Practical Matters (Saturday)

Error estimation, representation error, covariance,
approximate Kalman filters, other data assimilation
methods (Optimal Interpolation, 3DVAR).
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Reference

Wunsch, C., 2006: Discrete Inverse and State
Estimation Problems: With Geophysical
Fluid Applications. Cambridge University

Press, 371 pp.
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Models

General circulation models provide complete descriptions of the
ocean, motivating their use as a “curve” to fit the observations.

“Perpetual Ocean”
ECCO2 model simulation of
surface current (drifter tracks)

Atmospheric Reanalyses: Combines
observations with weather forecasting
models to yield the most complete
description of the global atmosphere.
e.g., ERA-5 relative vorticity (FZ Juelich)
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State Estimation

State estimation (data assimilation) is about
combining observations with models so as to

a) Reconcile diverse measurements into
complete and coherent descriptions of the

entire ocean,

b) Improve the accuracy of the model.

Mathematically, the problem is an inverse problem and
is most commonly solved by least-squares.
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The Mathematical Problem

It is instructive to describe the problem mathematically to
gain insight into what combining model and data is about.

_ _ model  data
Relating observations

Hx =~V t=1,M
to model At ,?t Y. ’
Observation state data
matrix  vector vector
location of
model grid observation
point
state & data vectors: Uy
Vijk 77 (xn ’ yn )
X, =| T Y. = :
u, v: zonal & meridional velocity Sijk r (xm’ ym7Zm)
T, S: temperature & salinity 1, :
t
n: sea level
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The Mathematical Problem

e.g., bilinear interpolation

n ('xn > Vo ) =W\, Wl T Wall T Wyl

a d a c
where w, = w, = etc

a+bc+d 2 4+4bc+d

Then, corresponding row of

HtXt Ry, Is n.
ij
77i+1j
Wl W2 W3 W4 : ~ n(xn,yn)
771‘j+1 : t
77i+1j+1
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The Mathematical Problem

Model X, =AX, +Gu, t=0,M-1

77w
state transition forcing control vector
matrix matrix (external forcing and other

inhomogeneous terms
including errors of the

model, i.e., errors of this
x relationshi

Uy 7, elationship)

V.. Y1 . .
state & ik i *r, Y1 : zonal & meridional wind stress
trol vectors: (= Ty u =| q; q: heat flux, e: evaporation,

control vectors: S r. precipitation
ijk €
771‘]' ’/;]
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The Mathematical Problem

Model X, =AX, +Gu,

e.g., temperature equation or  or . OT _
e o ox PR
. - T _oT T 2T
linearizing around background state 0 .y 0 +ua ...+K8 =g
ot Ox Ox A

Az’
A A A
(7). = (1 2K Ath j(Tifk ), + (@ )tﬁ(Ti—lﬂc ), — ({ )zﬁ(zﬂjk ),
A A oT
() e () e ) (), )+
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The Mathematical Problem

Model X, , =AX, +Gu,

At _ At _ At
(7). = (1 2K j(Tifk ), + (@ )IE(THJ/C ), (# )zE(T}”Jk ),

), () oo O (), (),
ijk )

—K
2
Az

Ty

T i

{Tjk} = K Atz ( /A) ﬂ I+2x Atz _(M/A) o N Atz At (8_T j T
Az ' 2Ax Az 1 2Ax Az OX ik ), Toa

“ : T

uijk

ECCO Summer School 2019 State Estimation 1 (I.Fukumori) 15



The Mathematical Problem

Model X, =AX, +Gu,

second-order time-stepping X
(e.g., Adams-Bashforth)

1 2 1 2
= AX, +°Ax,  + Gu, +°Gu,

Xt+1 — lA ZA Xt +(1G ZG) ut
Xt I O Xt—l ut—l
multiple time-steps X,,p = AX, +Gu, = A(AX,_,, +Gu,_,, )+ Gu,
G O)\u
=A’x, ,,+(A 1 A
o ( )(O Gj[ ut j
G ut—nAt
n+ n n- G u,_ n—
=A"'X,_,, +(A" A" ) e-(n-n)ae
G u
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The Mathematical Problem

Given observations YV what is the ocean state x ?

Observations HtXt ~ )A’t t=1,M
Model X, ., =AXx, +Gu, ¢t=0M-1

data : state U control K7
: y

\ ﬁ (x Ly ) \ vijk \ iy

. n. " X, = Tijk u, = q;

y, = .
t f S,-jk el.j
(xm’:ym’zm) 771']' 7;']'
t . p
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The Mathematical Problem

Hx
Hx

t+1

X~ AXt o Gllt
— Gu

— AX

t+2 t+1

Q

t+1

)
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Combining models and data

is mathematically EX ~ y
an inverse problem

N

X, Y,
Xt+1 ytﬂ
Xt+2 ~
u, 0
ut+1 0
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The Mathematical Problem

Linear Inverse Problem Ex =y

Given matrix K, and vector y what is vector X ?

e.g., fitting a line through data y=at+ b
/tl 1 //91 )
Lo 1lifa s
- [b] N
; Y Y
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The Mathematical Problem

H cee Xt yl
H Xz+1 ym—l Va\
S T S o E> Ex~y
—A | -G cee l.lZ 0 M X N
-A 1 -G u,,, 0
: : : M<«N

There are always more unknowns (number of elements) than
knowns (number of data), rendering inverse problems (state
estimation) mathematically ill-posed; i.e., there is no unique
solution. One needs to change what it means to solve a
problem, recognizing what is resolved and what is not.
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The Mathematical Problem

Line-fitting is also fundamentally an ill-posed problem, as typically
no solution exactly satisfies the problem when using observations.

tl 1 .)71
t, lifa P,
z z(bj“ s
ol ,

Explicitly writing misfits 7, r, -~ 7, where =y, —(at, +b)
the problem is mathematically

a
11 b 2
5 1 1 I Vs
7’2:
t 1 1)] : v
.
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The Mathematical Problem

The classic oceanographic inverse problem is that of determining
reference level velocities in geostrophic calculations.

Zapdz

Zref 8x

v(z):v(zref)+f‘:g00

Wunsch (1977, Science)

80°

75°

70

range; then the statement that property

' ' ‘c 30 l{ﬁ;““ T ' =gl C, is conserved may be written
ap
Henry .,
. Gy ¥
2 cape o Xk > (B + b) Aphx; = 0 n
Hatteras . e i=1
= T o1 feti, 35°
B . and let there be k=1,..., N such
= " sz properties. Then we can combine Eq. 1
" Romain into matrix form
100 fathom line Bar:::da A w =T (2)
where A is the N X M matrix of ele-
30° ments
Cape Canaveral % = Ay = Apf.i Ax.i (3)
.
w® b is the M X 1 column vector of baro-
tropic velocities, and I' is the N X 1 col-
N.E. Providence Channel umn vector
B Eleutllera Sis M
Gréat NW \Tittle i I;,= Z Uiy Apy; Axy “4)

Bahama j=1

Prav 'I'ﬂB-I'I ce
Bank Channel Bank

Fig. 1. Locations of Atlantis 215 stations used here.

Bahama

representing the imbalance of properties
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Singular Value Decomposition (SVD)

Inverse Problem [ x ~ 5\7

The singular value decomposition of matrix E is useful in
gaining insight into the problem and its solution.

Singular Value Decomposition (SVD) /—

)5'\

T o_
where [ ul.fuj—vl.

M-vector

< A2A,>0

ECCO Summer School 2019

T

r
M XN matrix E = ZﬁiuiviT
i1

v, = 51.]. singular vectors
N-vector
for i<j singular values

r<min(M,N) rank
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Ev, = Au

T T
u E=Av,
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EOFs are Singular Vectors

SVD E = Z/iiul.vl.T
i=1

Empirical orthogonal functions and principal components. T 2

: : EE u =/41"u.
are singular vectors of data. Geometrically W, ( V, ) can be ’ Lo
interpreted as the most common structure among the ETEVZ, = ,Il,zvl_

columns (rows) of K after W, (V) i=1k-1.

e.g., sea level anomaly Reconstruction with

first two EOFs

First two EOFs

0.10f g
0.05} E

-0.05F
-0.10F

140 160 180 200 220 240 260 280
Longitude (deg E) 140 154 168 182 196 210 224 238 252 266 280

[ S [ i
-2.5e+01 0.0e+00 2.5e+01 -2.5e+01 0.0e+00 2.5e+01
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SVD Inversion

Inverse Problem Ex=y where.E isa M x N matrix with
r T T

Singular Value Decomposition E= Z/liu,-V,-T U u,=v, v,= 51‘1
i<l r <min(M,N)

N
let X= Zaivi andsolvefor a, i=1, N
i=1

r N r
By substitution Ex = (Z/@uiViTj(zdiV,) = Za/@-“i ~y

Left multiply by u,” with k=1, r vyields » adu'u,=al ~u'§y

Therefore, a, = Ue ¥ for k=1r
ﬂ’k

a, fori =r+1, N remain undetermined, but they have no bearing on the
inverse problem and, therefore, could be chosen arbitrarily;

i.e., there is an infinite number of possible solutions.
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SVD Inversion

Inverse Problem Ex=y where.E isa M x N matrix with
r T T

Singular Value Decomposition E= Z/liu,-V,-T U u,=v, v,= 51‘1
i<l r <min(M,N)

N u Ty
Wehave x=) av, where a, = Z for k=1r
i=1 k

How can we choose a, for k=r+1, N ?

One approach is to seek the “simplest” solution; “Ockham’s razor”

Set a, =0 for k=r+1, N andchoose
7 T &

R N u;
X = Zaivi = Z p) Y \Z (SVD solution)
i=1 i=1 j

l

N
As ||x|| = /Zal.z the SVD solution is also the Minimum Length Solution.
i=1
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Properties of SVD Inversion

T A
u.
zyvi

i)
can also be writtenas £ =VA'U'y where

1) The SVD solution X = Z
i=1

A
. 2“2
U=(u,u,,---,u) V=(v,v,,---,v,) A=diag(h)=
M xr Nxr rXr
0
E=> Zuv/=UAV' U'U=V'V=1  UU I
P rXr . MxM r<M
y Vv ?&INxN r<N

Ex=y

a) VAU’ istheSVDinverse of E .

b) The SVD inverse is equivalent to Moore-Penrose
inverse, pseudo-inverse, right-inverse, left-inverse.

ECCO Summer School 2019 State Estimation 1 (I.Fukumori)
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Properties of SVD Inversion

2) The SVD solution is identical to ordinary least-squares solution

(when the latter exists). /

Seek solution that minimizes residual norm of the inverse problem;

J = (§7—EX)T (y—Ex)

By setting o _ 0 Wy %= (ETE)_1 E'y
OX

a) (ETE)_1 E” is the left-inverse of E ; (ETE)_1 E' E=1I
b) Equivalence to SVD can be shown by substitution.
E= UAV’'
(E'E) " E” =(VAU" UAV') VAU =(VA?V") VAU
=VA”V' VAU = VAU’

ECCO Summer School 2019 State Estimation 1 (I.Fukumori)
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Properties of SVD Inversion

3) Errorestimateof X=VA'U'Y

SVD estimate with error-free data Xx=VA'U'Y
Estimation error due to data error x—-X=VA U’ (y _y)

Estimation error covariance matrix
statistical expectation —><(§( . i) (f( B i)T> — VA U? <(§, . y) (S’ _ y)T > UA~'VT
Defining R, =((3-¥)(¥-7)") =VA'U'R UA'V’
f R,=0,1 =0, VA7V'

Yy yy

The smaller the singular values, the larger the estimation error;
i.e., there is a trade-off between accuracy & resolution.

4) Row and column weighting changes SVD;

Ex~§ ) WES(S'x)~Wy

U
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Summary of Inverse Problem and SVD

a) State estimation (data assimilation) is an inverse problem,

H X, yt
H Xt+1 §71+1 a
o x| » EX ~ y
A1 -G w | ] 0
AT G ||u,| |0 M x N
RS | O . V< N

b) Most (all) oceanographic inverse problems are rank deficient
(mathematically ill-posed). Choices are made to obtain particular
(optimal, objective) solutions; e.g., SVD solution

T A~
u
a, = ;y for k=1, r

k
a, =0 for k=r+1, N
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Other Inverse Methods

Solve EX~=Yy incorporating
prior statistical information

* Minimum Variance Estimate

aka Gauss-Markov theorem, basis of objective mapping.
Closely related to the Kalman filter and related smoothers in state
estimation.

* Least-Squares

Closely related to the Adjoint Method (4dVAR) in state estimation.

... Which turn out to be the same.

ECCO Summer School 2019 State Estimation 1 (I.Fukumori)
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Gauss-Markov Theorem

Suppose we estimate X from y using prior statistical knowledge;

statistical i <X> -0 <XXT> - R
expected value

-0 (=R, (x7)=R,

XX

Seek a linear solution of form X = B)A’ that would have the
least posterior error for each of its elements.

Error covariance of X
P, =((x-x)(x-x)")=((By-x)(By-x)")
=B(yy")B" —(xy")B" - B(yx" )+ (xx")
=BR,B"' -R, B" -BR, ' +R
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Gauss-Markov Theorem

T T T
P, =BR_ B -R _B"-BR_"+R_

_ %) _
- (B N nyRyy 1)Ryy (B N nyRyy 1) - RXyRyy leyT +R,,
re-written by “completing the square” @<’ +bx=a[x+b/2a] —b*/4a
ACA” ~BA” ~AB" =(A-BC')C(A-BC") ~BC'B’

Thus, choosing B = RXyRyy_1 minimizes all diagonal elements of P_

leading to - P
x=R R "y

_ sy 5
Pxx - Rxx _ nyRyy ny

1) The estimate (GM Estimate) is a Best Linear Unbiased Estimate (BLUE),
2) Errors are reduced from prior estimates by information from y (2"
termin P_),

3) Estimate is the basis of objective mapping.
ECCO Summer School 2019
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Objective Mapping is a GM Estimate

Objective mapping . _ .
Map irregularly sampled observations Y

to values on a regular grid X .

Assuming that the field has a spatially
uniform Gaussian covariance function with
standard deviation o and correlation
distance /4 , and that the observations y
have a random white noise of variance 3?,

_— 2
(ny )U S exp| — ; lzyer

X = nyRyy_1§7 where :
(Ryy )jk =0 exp _Hyrj ;jr H +n25}k

[Bretherton et al., 1976]
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Minimum Variance Estimate

Use Gauss-Markov theorem

ﬁ - nyRyy_ly
Pxx — Rxx o nyRyy_leyT
tosolve Ex~xy —) Ex+n=y <an>:O
R, = <x(Ex+n)T> = <XXTET> =R_E’ where R _ = <xxT>
R,, =((Ex+n)(Ex+n) ) =ER E" +R,, R,, =(nn")

Then, R=R_E" (ER.E"+R,,) §

P,=R,_-R_E'(ER_E +R,) ER

XX

ECCO Summer School 2019 State Estimation 1 (I.Fukumori)



Properties of Minimum Variance Estimate

Minimum Variance Solution of Ex ~y
given prior error R, :<XXT> R, :<(§'_EX)(5'_EX)T>
IS X = RxxET (ERXXET T R““ )_1 57

-1
with posterior error P, =R_—-R_E’ (ERXXET + Rnn) ER

X XX

-1
1) Theproduct R_E’ (ERXXET +Rnn) can be regarded as an
inversion of E incorporating prior statistical knowledge,

2) Assumptions about R, R, are not arbitrary. Solution £ and
residual n=y—EX must be consistent with these assumptions,

otherwise the assumptions (and solution) must be rejected.

3) n isnotsimply data error (i.e., error of ¥ ) but the residual of the
inverse problem.
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Least-Squares

symmetric & positive definite weights

Find solutionto EX =¥
ind solution to y r \

that minimizes J = (§—Ex) W™ (§-Ex)+x"S'x

e ordinary least-squares w=I S'=0

* weighted least-squares W = diag(w) S'=0
* tapered least-squares S = a’iag(y)

* generalized least-squares (W)U # 0

* regularized least-squares (S) =0

y

Typically, one chooses
WeR, =) SR, =)
n=y-Ex
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Why choose inverse error covariance as weights?

By choosing W=R = <(y —-Ex)(y- EX)T> S=R_ = <XXT>
elements of the scaled least-square problem become normalized (i.e.,
uncorrelated and equal variance, so elements are on equal footing).

Write Cholesky decomposition W=W"w" §=8"78"

Wy, W, ot Wy, %On_SIngular/
w “ee W
s u i matrix
er triangle matr
0 -

WMM

In terms of scaled variables n'=W™"?(y-Ex) x'=S""x

elements are uncorrelated and are normalized (unit variance)
<nran> _ w72 <(§, _ EX)(}A' _ EX)T>W—1/2 — W PWT2PW2 W2 —
and J becomes J=(y- Ex)T W (§y-Ex)+x'S'x=n"n"+x"x'

M N
2 2
=Eni’ +Exl.’
) )
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Why choose inverse error covariance as weights?

Example of de-correlating variables

W 1 0.99) (1 0 Y1 099 W
1099 1 ) 1099 0.14)l0 0.14)
-1
—— 1 0 (1 0
0.99 0.14 70 7.1
n'=W72p = 1 0\~
7.0 7.1)\n,

Instead of having two of the same in original form, the scaled
version has just one of them as its variable and the scaled
difference between them as another.
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Least-Squares

Minimize J=(§-Ex) W'(§-Ex)+x'S'x
Solve G—J =0
0).
when A is
Basic notation of vector differentiation symmetric

|

ﬁz(ﬁ ﬁ)T p ola’r) _ofr'a) | a(qTAq):(Ampf)q:qu

ox | o, OX oq oq oq
% ... Yy
ox, ox,
8q . . . 0 Ba) =B’ 0 TR\ —
—=| : ; :'> ——(Bq)=B —|\a'B)=B
0). 0q( ) aq( )
% ... %u
Ox OX
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Least-Squares

Minimize J=(§-Ex) W'(§-Ex)+x'S'x
Solve a—J:0
0).
o(qa'r) o(r'q) 0(q"Aq) . Oy r O oy
e o(AraT)a=2aq 7 (Ba)=B oq\1'B)=B
1o/ _1 0(¥ ~Ex) 0 (¥ —EX)T W' (§ - Ex) +lixTS_1x
20x 2 ox  O(y—-Ex) 2 Ox

=-E'W ' (y-Ex)+S'x
=(E'W'E+S™ )x-E'Wy

(E'W'E+S" )‘1 ETW'§

Therefore, X
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Property of Least-Squares Solution

J = (jf —EX)T w (§7 — Ex) +x'S7'x
is minimized by % = (ETW_IEJrS_I)_1 E'Wy

1. When S'=0 W=1 (ordinary least-squares),
t=(E'E) E'y

which reduces to familiar forms in particular examples;

e.g., A
1 Vi

If []x[} E=(1 - 1)
)

1 R
then X=—Zy,-

ECCO Summer School 2019 State Estimation 1 (I.Fukumori)
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Property of Least-Squares Solution

J = (jf —EX)T w (37 — Ex) +x'S7'x
is minimized by % = (ETW_IEJrS_l)_1 E'Wy

2. This solution can also be writtenas % =SE’ (ESET +W)_1 y

using a variant of the “matrix inversion lemma”

AB' (BAB' + (:)_1 =(B'C'B+A" )_1 B'C"!

Remarkably, the Least-Squares solution is the same as
the Minimum Variance Estimate

f=R _E"(ER_E +R,) §

when S=R_ and W=R__  asisusually done.

ECCO Summer School 2019 State Estimation 1 (I.Fukumori)
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Property of Least-Squares Solution

J=(y-Ex)' R,, " (§-Ex)+x"R_'x
s

is minimized by & = (E'R,,"E+R,,") E'R,,"'§

3. The formal error of the canonical least-squares estimate is
therefore,
T T -1
PXX — RXX _ RXXE (ERXXE + Rnn) ERXX
This can also be written as
P,=(R,"+E'R,,"E)

XX

using the “matrix inversion lemma”
(C'+B"A'B) =C-CB'(BCB" +A) BC

This latter expression of la_J:<ETR 1T ELR —I)X_ETR g
error is the inverse of the 2 Ox " ™ "
Hessi f J;
cssian ot J 2 ip Ll (R EeR)
2 2 OX Ox

44
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Summary of GM Inverse and Least-Squares

b)

Solving Ex =Yy given
R = <xxT> R = <(§I—Ex)(§r—Ex)T>

The minimum variance solution (Gauss-Markov inversion) is

t=R_E"(ER_E'+R,) §

The least-squares solution minimizing the sum of residual and
solution norms weighted by their respective error covariance

J=(y-Ex) R, (§-Ex)+x"R_'x

is the same as the minimum variance solution.

ECCO Summer School 2019 State Estimation 1 (I.Fukumori)

45



Summary of GM Inverse and Least-Squares

-1
Minimum Variance Estimate X = RXXET (ERXXET + Rnn) y

Least-Squares Estimate minJ = min [(y ~Ex) R,, " (§-Ex)+x’ Rxx‘lx}

c) Neither solution assumes Gaussian probability distribution. The
methods above only assumed covariances and should not be confused

with Maximum Likelihood Solutions and/or related Bayesian methods
that are based on probability distributions.

3

The solutions are the same when the
probability distribution is Gaussian, but
are generally different otherwise.

Probability

v

Realization
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Concluding Remarks (Lecture 1)

1) Combining data and model is mathematically an inverse problem,

2) Inverse problems with data are invariably ill-posed and do not have
unique solutions in the strict mathematical sense,

3) Inverse methods provide objective means to obtaining optimal
solutions,

a) Minimum Length (Singular Value Decomposition),
b) Minimum Variance,

c) Least-Squares,

d) Maximum Likelihood,

4) Minimum error variance estimate and least-squares estimate are
equivalent.
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Next Topic

H X, y,
H Xt+1 yt+1 -
Xz+2 ~ » EX z y
“A 1 -G | m, 0
A1 G a0 M x N

M« N

Typical dimensions of K in state estimation are O(10°~109),
making direct application of basic inverse methods impractical.

However, the problem can be re-formulated into a series of

smaller ones, taking advantage of the problem’s structure, and
solving them using these basic methods.

E> e Kalman filter and related smoothers
* Adjoint method
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