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Green’s Functions for linear differential equations
Let L be an arbitrary linear differential operator.

A Green's function, G(x,y), 1s defined as the impulse response
of this linear operator, that 1s:

LG(xy) = o(x—y),
where o(x—y) 1s the Dirac delta function applied at location y.

By linear superposition, Green’s functions can be used to solve a
differential equation with arbitrary forcing term, Lu(x) = f(x).

The solution is the convolution: u(x) = | G(x,y) f(v) dy.



Model Green’s Functions estimation approach

GCM: A General Circulation Model can be represented by a set of rules
for time stepping a state vector x(t;) one time step in the future:

X(ti1) = M(x(t).m)

where M represents the known time stepping rules and vector n
represents perturbations to a set of model parameters. Vector n 1s
assumed to be a noise process with zero mean and covariance matrix Q.



Data: The state estimation problem aims to estimate parameters 1 given
a set of observations:

y = H(x)+¢
where H 1s the measurement function, and residual € 1s a noise process
assumed to have zero mean and covariance matrix R. For the Green’s
function approach, the data equation 1s rewritten:

y=Gm)+e
where G 1s the convolution of measurement function A with GCM
dynamics M.



Model Green’s Functions estimation approach

Cost function: Control parameters m can be estimated by minimizing
a quadratic cost function:

J = nTQ-ln + STR-IS

where superscript T 1s the transpose operator and superscript —1 denotes
a matrix 1nversion.



Linearization: To minimize this cost function, the GCM and data
equations are linearized about a baseline simulation x, (n = 0).
For “small” perturbations:

G(n) = G(0) +Gn
where matrix G 1s an nXp matrix, » 1s the dimension of observation
vector y, and p 1s the dimension of parameter vector . Matrix G can be
determined by performing a series of GCM sensitivity experiments.
Specifically, each column of matrix G 1s obtained by perturbing the
corresponding element in parameter vector i and then carrying out a
GCM integration over the estimation period.



Model Green’s Functions estimation approach

Minimization: The minimization of cost function J subject to the
linearized model-data constraints has solution:
— TR-1
Na = PG'R Yd
where y,4 1s the model-data residual, that is, y4 = y— G(0), and P 1s the
uncertainty covariance matrix:

P = (Q!+G'RIG)"



Solution: The optimized solution X, is:

x, = x,+ (GTR1G) ! Ry,

a

where x, = M(x,n= 0) 1s from the baseline simulation and 1t 1s assumend
that there is no prior information about control parameters, i.e., Q' = 0.

If linearization assumption holds, we will have: x, = M(x,n,).



State estimation: Formally combining the two
knowledge reservoirs (an early vision, ca. 1982)

Acoustic Tomography and Other Answers
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Figure 26. All measurements and models of the ocean can be interconnected to provide global estimates of the state of the three-dimensional ocean. Some
side benefirs accrue — e.g. improved estimates of the earth’s gravity field.

Taken from: C. Wunsch, in "A Celebration in Geophysics and Oceanography 1952.
In Honor of Walter Munk on his 65th birthday."



Example application:

Large-Scale Circulation of the Pacific Ocean from Satellite Altimetry
(Stammer and Wunsch, 1996)
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Figure 1d,e. (d) Coarse 10° by 10° grid, on which the Figure 23. Estimates of seasonal surface elevation anomalies relative to the 1-year mean and
Green’s functions where calculated in layers 1 through related geostrophic currents. Fields represent (a) spring, (b), summer, (c) fall, and (d) winter,

3. (e) Owing to geographical shoaling, the bottom layer with spring starting at the beginning of March. Positive and negative values are drawn by bold,
has a smaller geographical extent on the coarse grid. and thin lines, respectively. Contour increment is 1 cm. The reference vector represent 4 cm/s.



Example application:

Linearization of an Oceanic General Circulation Model for Data
Assimilation and Climate Studies (Menemenlis and Wunsch, 1997)
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FIG. 9. Response of the four-level GFDL model to a 0.05°C perturbation, between 100- and
600-m depth, at the end of month 16. A two-dimensional low-pass spatial filter with cutoff
wavelength of 16° has been applied to smooth scales not resolved by the reduced-order linear
model. The heavy dot indicates the initial location of the disturbance.
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FIG. 9. Response of the four-level GFDL model to a 0.05°C perturbation, between 100- and
600-m depth, at the end of month 16. A two-dimensional low-pass spatial filter with cutoff
wavelength of 16° has been applied to smooth scales not resolved by the reduced-order linear
model. The heavy dot indicates the initial location of the disturbance.



Example application:
Linearization of an Oceanic General Circulation Model for Data
Assimilation and Climate Studies (Menemenlis and Wunsch, 1997)

3. Model description

The current study was initiated using the GFDL nu-
merical code and model output from a global eddy-
resolving integration by Semtner and Chervin (1992).
These results are reported in sections 6 and 7. We have
now switched over to the newly developed MIT GCM.

This model is used to carry out the perturbation analysis
reported in section 4 and will be the focus of our future
assimilation efforts. The above models and their con-
figurations are briefly described below.

a. MIT model

In its current configuration, the MIT GCM (Marshall
et al. 1997a,b) solves the incompressible Navier—Stokes




Example application:

Basin-Scale Ocean Circulation from Combined Altimetric, Tomographic
and Model Data (Menemenlis et al., 1997)
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Example application:

Ocean Climate Change: Comparison of Acoustic Tomography, Satellite
Altimetry and Modeling (ATOC Consortium, 1998)

22 cm (rms)

Fig. 1. The ATOC acoustic array is superimposed on a map of the root-mean-square (rms) sea level
anomaly from 4 years (January 1993 to December 1996) of TOPEX/POSEIDON altimetric mea-
surements. Red lines indicate the sections used in the present study and are referenced by letter
labels. Yellow lines show additional sections along which the acoustic propagation has been
observed, but for which the data were not used here. Data assimilation was carried out in the region
bounded by the outer white rectangle, and heat content estimates were obtained inside the inner
white rectangle. Much, but not all, of the elevation anomalies represent seasonal thermal changes
within the ocean, with the acoustic data providing a stable spatial average that is otherwise difficult
to obtain. The ATOC region, being on the eastern side of the ocean, shows comparatively weak
variability. Nevertheless, it is evident that the different acoustic sections will, during any 10-day
period, have potentially very different anomalies.

Sea Surface Height (cm)

Jan 93 Jan 95 Jan 97

Fig. 3. The range-averaged sea level anomaly along the acoustic sections inferred by several
independent methods: (i) thick black lines indicate the ATOC acoustic measurements converted to
equivalent sea surface height for comparison with the altimeter data, (ii) thin black lines are from
the TOPEX/POSEIDON altimeter data, (i) dashed lines represent the climatological thermal
anomaly converted to sea surface height, (iv) blue lines are the GCM estimates, and (v) the asterisks
along section v1 are the XBT data. Uncertainties are indicated for the acoustic estimates: the
possible errors are largest along section v1 because the upper ocean variability is unresolved due
to a lack of surface-reflecting rays near the receiver.



Example application:

Using Green’s Functions to Calibrate an Ocean General Circulation
Model (Menemenlis et al., 2005)

TABLE 4. List of sensitivity experiments and optimized parameters for the second Green’s function optimization. For experiment 6,
the optimized parameter is indicated as a factor multiplying the dQ/dT fields of Barnier et al. (1995).

Expt Parameter Baseline Optimized

1 Vertical diffusivity (10~° m? s~ ?) 5 151 £ 12

2 Vertical viscosity (107° m?s™?) 100 17.7 = 3.0

3 Ri,, boundary layer depth 0.300 0.354 = 0.004

4 Ri,, shear instability 0.700 0.699 = 0.008

5 Salinity relaxation (days) 60 445+ 1.2

6 Temperature relaxation (0Q/97T) 1.000 1.630 = .008
7-10 Isopycnal diffusivity (m?s~?) 500 Linear combination
11-14 Surface wind stress NCEP/COADS Linear combination
15-20 Initial conditions SPINUP Linear combination

- 43% decrease 1n cost function
- significant reduction in model bias and drift
- 10-30% 1increase 1n explained variance



Example application:

Using Green’s Functions to Calibrate an Ocean General Circulation
Model (Menemenlis et al., 2005)

TABLE 2. Optimized parameters for case 3 (Table 1) are compared to parameters estimated one at a time. The last row displays the
cost function reduction in percent assuming that the problem is linear. Because the parameter estimates are linearly dependent, the
one-at-a-time estimates differ substantially from those of case 3.

Parameter Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9
Vertical diffusivity (10°° m?s™?) 15.4 17.4 — — — — —
Vertical viscosity (10~ m?s™?) 46 — 348 — — — —
Isopycnal diffusivity (m?*s~?) 572 — — 399 — — —
Time-mean wind stress 0.43 — — — 0.72 — —
Initial temperature 0.11 — — — — 0.60 —
Initial temperature and salt 0.71 2.5

Cost function reduction (%) 29.8 19.4 0.58 0.14 5.42 6.46 14.2




Example application:

Using Green’s Functions to Calibrate an Ocean General Circulation
Model (Menemenlis et al., 2005)
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Example application:
Using Green’s Functions to Calibrate an Ocean General Circulation
Model (Menemenlis et al., 2005)
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Example application:

Using Green’s Functions to Calibrate an Ocean General Circulation

Model (Menemenlis et al., 2005)
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Example application:

Ocean Carbon-cycle Model Intercomparison Project 3 (OCMIP-3)
(Mikaloff Fletcher et al. 2006, 2007; Gruber et al. 2009)
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Figure 2. The 24 regions used for the ocean inversion. The region numbers show the aggregation from
the original 30 regions [Mikaloff Fletcher et al., 2003] to the 24 regions used in this study.



Example application:

Ocean Carbon-cycle Model Intercomparison Project 3 (OCMIP-3)
(Mikaloff Fletcher et al. 2006, 2007; Gruber et al. 2009)
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Figure 1. Air-sea CO2 fluxes for 10 regions, ordered
by latitude and Ocean basin (positive: outgassing;
negative: uptake). (a) Comparison of contemporary
air-sea fluxes of CO2. Shown are the ocean inversion
estimates (this study), the new pCO2-based estimates
of Takahashi et al. [2008], the mean estimates based
on results from the 13 ocean biogeochemistry models
that participated in the second phase of the Ocean
Carbon-cycle Model Intercomparison Project
(OCMIP-2) [Watson and Orr, 2003], and the mean
estimates from the TransCom-3 project based on the
interannual (level 3) inversions of atmospheric CO2
[Baker et al., 2006]. The uncertainties for the
OCMIP-2 estimates reflect the (unweighted) standard
deviation across the 13 models, while the
uncertainties for the TransCom estimates were
obtained by quadrature of the within and between
model errors reported by Baker et al. [2006]. (b)
Weighted mean estimates of the natural,
anthropogenic, river-induced, and contemporary air-
sea fluxes of CO2 based on our ocean inversion
[Mikaloff Fletcher et al., 2006, 2007]. The results are
aggregated to 10 regions from the 23 regions solved
for in the inversion for reasons of clarity. Error bars
denote the cross-model weighted standard deviation
of the mean. The anthropogenic and contemporary
CO2 fluxes are for a nominal year of 1995.



Example application:
Ocean Carbon-cycle Model Intercomparison Project 3 (OCMIP-3)
(Mikaloff Fletcher et al. 2006, 2007; Gruber et al. 2009)
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Figure 5. Ocean interior distributions of the tracers reflecting the exchange of CO, across the air-sea interface, displayed
as global-scale section plots organized around the Southern Ocean in the center. (a) Distribution of anthropogenic CO,,
Cant, estimated using the AC* method of Gruber et al. [1996]. (b) Distribution of the gas exchange component of natural
CO,, ACygys ex, following Gruber and Sarmiento [2002]. The inversion interprets these distributions by determining, given
ocean circulation and mixing, a set of surface ocean fluxes that most closely matches these observations. Also shown are
isolines of potential density anomalies, oy (density referenced to the ocean surface minus 1000 kg m~>), along which most
of the oceanic flow occurs. Major ocean circulation features are indicated by schematic arrows. Figure 5 is based on data
taken from GLODAP [Key et al., 2004]. NADW: North Atlantic Deep Water, CDW: Circumpolar Deep Water; SAMW:
Subantarctic Mode Water; AAIW: Antarctic Intermediate Water.



Example application:
Ocean Carbon-cycle Model Intercomparison Project 3 (OCMIP-3)
(Mikaloff Fletcher et al. 2006, 2007; Gruber et al. 2009)

Table 1. Evaluation of Model Skill Based on Comparisons Between CFC-11 Model Simulations and the
GLODAP Gridded CFC Data Set®

Normalized Inverse Anthropogenic CO,  Forward Anthropogenic CO,
Correlation  Std. Dev.”  Model Skill® Uptake, Pg C yr ' Uptake, Pg C yr
BERN 0.89 1.04 0.81 2.05 N.A.
ECCO 0.96 0.89 0.91 2.01 N.A.
MIT 0.91 1.00 0.85 222 N.A.
NCAR 0.95 0.98 0.91 2.18 2.36
PRINCE-LL 0.90 1.18 0.80 1.85 1.90
PRINCE-HH 0.93 1.05 0.87 2.33 243
PRINCE-LHS 0.93 1.04 0.86 1.99 2.04
PRINCE-2 0.93 1.03 0.87 2.17 2.24
PRINCE-2a 0.91 1.05 0.85 2.25 2.35
UL 0.87 1.0 0.77 2.81 2.95
Mean 0.92 1.02 0.85 2.18 2.32

?Also tabulated are forward and inverse estimates of the global total anthropogenic CO, uptake (Pg C yr ', scaled to 1995).
Forward results are from OCMIP-2 [Dutay et al., 2002; Watson and Orr, 2003].

®Normalized Std. Dev. is defined as the standard deviation of the modeled field divided by the corresponding standard
deviation of the observed field.

“Following Taylor [2001].

Tracer Green’s Functions from old 2-deg ECCO solution was among
solutions with highest correlation, lowest standard error, and highest
model skill relative to CFC-11 observations!
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Comparison with representer method

The representer method (see Andrew Bennett’s books and publications)
was developed for data-sparse inverse modeling problems.

Both the Green’s Functions and representer approaches provide a
reduced orthogonal basis sets for inversions. The two methods are
mirror images of each other.

The representer method should be used when the number of available
observations 1s small. The optimized solution 1s projected on the
“observable” parameter space.

The Green’s Functions approach should be used when the number of
control parameters 1s small. The optimized solution is projected on the
“controllable” parameter space.



Comparison with adjoint method

The Green’s function approach has been called a poor-man’s adjoint.

Advantages relative to the adjoint method are simplicity of
implementation, the possibility of offline experimentation with different
cost functions, improved robustness 1n the presence of nonlinearities, and
complete a posteriori error statistics for the parameters being estimated.

The major drawback of the Green’s function approach is that
computational cost increases linearly with the number of control
parameters. By comparison, the cost of the adjoint method, while
substantial, 1s largely independent from the number of control
parameters.



Summary and concluding remarks

Green’s functions provide a simple yet effective method to test and to
calibrate general circulation model parameterizations, to study and to
quantify model and data errors, to correct model biases and trends, and to
blend estimates from different solutions and data products.

They can be applied to pretty much any general circulation model since
all that 1s required 1s forward-model sensitivity experiments.

They are a better way to adjust uncertain model parameterizations than
ad-hoc or one-at-a time parameter adjustments.

In the absence of adjoint model, or for strongly nonlinear systems, they
can be used for preliminary model adjustments.



Model Green’s Functions cheat sheet

Least squares method based on computation of model Green’s functions.

Used for, e.g., atmospheric tracer inversions (Enting and Mansbridge, 1989; Tans et al., 1990; Bousquet et al., 2000),
ocean circulation estimates (Stammer and Wunsch, 1996; Menemenlis et al., 1997a, b; ATOC 1998, 2005; Nguyen et al., 2011),
ocean carbon inversions (Gloor et al., 2003; Mikaloff Fletcher et al., 2006; 2007; Gruber et al., 2009; Brix et al., 2015),
and joint ocean-atmosphere carbon dioxide inversions (Jacobson et al., 2007a; 2007b).

GCM:

Data:

Cost function:

Linearization:

Solution:

X(ti41) = M(x(1,),n)

y = Hx)+e=Gn)+e

J = e'Rle

G(m) = G(0) + Gn

X, =X, H(G'R'G) 'R (y-G(0))

x(t;) is the ocean model state vector at time t;
M represents the numerical model
n is a set of control parameters.

y is the available observations
H is the measurement model
G is a function of M and H

€ is additive noise

J is quadratic cost function
R is estimate of covariance matrix of €

G is a kernel matrix whose columns are
computed using a GCM sensitivity
experiment for each parameter in vector n.
G(0) is from baseline GCM integration.

X, is optimized solution that minimizes cost
function J.
X, is the solution of the baseline simulation



