Salinity and the Global Ocean Water Cycle

Julian J Schanze

Earth & Space Research, Seattle, WA

and additional slides by:

Nadya Vinogradova

NASA Headquarters

Raymond W Schmitt

Woods Hole Oceanographic Institution

Elizabeth Thompson

Applied Physics Laboratory, University of Washington

ECCO Summer School 2019 Friday Harbor, WA

Overview

- ➤ The Global Ocean Freshwater Cycle
- Links to Salinity
- Changes in the Water Cycle and Salinity
- ➤ E-P-R, Recycling, and Implied Exports through E:P Ratios
- NASA Field Campaigns: Satellites and In Situ Measurements
- **Conclusions**

Global Salinity

- ➤ A Smapshot (pardon the pun) of Global Salinity during the SPURS-2 field campaign, September 2017.
- > ITCZ, Amazon, BoB (end of monsoon). Also RFI/Land

The Global Water Cycle

- Oceans dominate fluxes and reservoirs
- Generally 'misrepresented'

Reservoirs represented by solid boxes: 10³ km³, fluxes represented by arrows: Sverdrups (10⁶ m³ s⁻¹) Sources: Baumgartner & Reichel, 1975; Schmitt, 1995; Trenberth et al., 2007; Schanze et al., 2010; Steffen et al., 2010

The Link to the Energy Balance

➤ Stephens et al, 2012: An update on Earth's energy balance in light of the latest global observations, Nature Geoscience, 5(10), 691-696

From Clouds...

- > ITCZ clearly visible
- High latitudes
- > Subtropical gyres almost cloud-free
- Source:
 Blue
 Marble
 NG

...to Rain

> IMERG Precipitation snapshot (half-hourly)

Mean Precipitation (1987-2006)

- From Schanze & Schmitt (2010), adjusted for E-P-R=0
- > ITCZ, Kuroshio, Gulf Stream

Mean Evaporation (1987-2006)

- > OAFlux 3.1, From Schanze & Schmitt (2010), E-P-R=0 adjusted
- > Peak in WBCs (recycling) & SSS maximum areas

Mean E-P (1987-2006)

- From Schanze & Schmitt (2010), adjusted for E-P-R=0
- > Advective effects visible

Salinity and Freshwater Flux

- ➤ North Atlantic E-P (left) and Aquarius Salinity (right) are highly correlated
- ➤ E-P=0 line right at vegetative index transition in Africa

Clausius-Clapeyron

- Increased water holding capability in the atmosphere
- Implied amplification of water cycle with increasing global temperatures
- >~7.6%/K

Pattern Amplification

- temperatures are rising...
- ➤ Changes in SSS?

Pattern Amplification

- Durack et al., 2010 (J. Clim) & 2012 (Science)
- > Salinity is hypersensitive to change in the water cycle

Mean SSS

50-Year SSS Change

П

E-P Pattern Amplification in ECCO

(Slides: Nadya Vinogradova-Shiffer, NASA HQ)

CONTEMPORARY CHANGES IN WATER CYCLE:

Average amplification $\sim 5\%^*$ – consistent with Clausius-Clapeyron equation

^{*}Equivalent 7.6% °C and 0.65 °C change

NASA's ECCO

ECCO uses basic physical principals and understanding of data uncertainties

F = ma

Estimating the Circulation and Climate of the Ocean (ECCO)

ECCO SSS - Jan1992

Slide: Nadya Vinogradova-Shiffer

SSS Pattern Amplification in ECCO

(Slide: Nadya Vinogradova-Shiffer, NASA HQ)

CONTEMPORARY CHANGES IN SALINITY:

Little evidence of global amplification, despite strong regional changes

SSS Pattern Amplification in ECCO (2)

(Slide: Nadya Vinogradova-Shiffer, NASA HQ)

Role of natural variability in modulating SSS trends

IPO, Hanley et al., 2015

2005

Surface Fluxes: Homogeneity

AVHRR

Nimbus

SSM/I Satellite, Image: NASA

Number of observations for each 2.5° grid box. For NCEP-1 Strong changes are evident at indicated times. From: Kistler et al., 2001.

Surface Fluxes: Homogeneity

- This analysis visualizes spectral changes (~variance) over time
- (relatively) homogenous period for E-P starts in 1987, including RA
- Introduction of AVHRR (1982 -1985), and SSM/I (1987)

П

E and P Uncertainties (large!)

➤ Not only are there vast differences between E and P products, they are also often internally inconsistent.

Exceptions: Forced balance (e.g. CORE.2) or state estimates (ECCO v4)

P+R E	OAFlux	NCEP-1	NCEP-2	ERA-40	ERA-Int	CORE.2	MERRA
GPCP	+0.46	-0.41	-2.24	-1.00	-1.15	-0.69	+0.22
NCEP-1	+1.05	+0.18	-1.65	-0.45	-0.54	-0.11	+0.81
NCEP-2	+3.28	+2.42	+0.59	+1.65	+1.70	+2.13	+3.05
ERA-40	+3.87	+3.04	+1.30	+2.41	+2.70	+2.70	+3.61
CMAP	+0.90	+0.03	-1.80	=0.53	-0.71	-0.26	+0.66
CORE.2	+1.01	+0.15	-1.69	-0.45	-0.60	-0.14	+0.78
MERRA	+0.47	-0.40	-2.23	-1.30	-1.14	-0.69	+0.23

E-P(-R) Balance 1987-2006

- Imbalance of 0.41 Sv between OAFlux E and GPCP P and Dai&Trenberth R
- Error bars much larger on E, P, possibly R.
- Closes within error bars

EOF Analysis of E-P: Mode 1 - 29.4%

- Seasonal cycle shows 'flip-flop' pattern
- Reversal of pattern along eastern boundaries of basins
- No clear change in amplitude over time

EOF Analysis of E-P: Mode 2 – 9.2%

- Intertropical Convergence Zone (ITCZ) shift
- Kuroshio and Gulf stream are clearly negative
- ➤ 12-month period of cycle, ENSO effects around 1997
- No clear change in amplitude

EOF Analysis of E-P: Mode 3 – 4.8%

Basin Freshwater Transports

- ➤ Arctic Ocean freshwater balance matches observations (freshwater +~3*10⁸ kgs⁻¹)
- ➤ Significant changes compared to Wijffels et al. (1992)

Salinity Variance Estimates

- Fresher areas have net input of freshwater
- ➤ Salty areas have net loss of freshwater
- Generation of salinity variance
- Dissipation through downgradient flux

Salinity Variance Estimates

- ➤ This is integrating the previous diagram
- ➤ Bin size: 0.1 in salinity
- Net evaporation (~salt input) at high salinities, net precipitation in fresh areas
- Down-gradient flux in the interior (advective and diffusive)

Evaporation-Precipitation binned by SST

Positive Component (E>P)

Negative Component (P>E)

P>E in the ITCZ

P>E outside the ITCZ ("high" latitudes)

E:P Ratio, quite different from E-P (black line is 1:1)

Global E:P by Latitude

Global E:P by Absolute Salinity (g/kg)

Atlantic E:P by Latitude

Atlantic E:P by Absolute Salinity (g/kg)

Pacific Ocean E:P by Latitude

Pacific Ocean E:P by Absolute Salinity (g/kg)

Indian Ocean E:P by Latitude

Indian Ocean E:P by Absolute Salinity (g/kg)

Southern Ocean E:P by Latitude

Arctic E:P by Latitude

Arctic E:P by Absolute Salinity (g/kg)

Global export: ~4.5 Sv. E in E>P: 8.8 Sv (~2:1)

Global Values: ~ -3.3 Sv, P in P>E ~ 8.1

Global Value ~ -1.2 Sv. P in P>E: ~3.7 Sv. (1:3)

Global Value: ~ -2.1 Sv. P in P>E: ~ -4.5 Sv (1:2)

Water Cycle Conclusions

- > Approximately 4.5 Sv export from subtropics
- > ~1.2 Sv to ITCZ, 1.2 to land & 2.1 Sv to high latitudes
- ➤ Recycling is strongest in ITCZ: P=3-4E
- ➤ Average recycling in evaporation dominated areas is ~ E=2P
- Excellent agreement with recent isotope estimates (Benetti *et al.*, 2017)
- ➤ Implications for both variance generation and remote sensing (indicator for patchiness)

NASA Field Campaigns

- ➤ With the launch of Aquarius/SAC-D, NASA's Ocean Salinity Science Team (OSST) has grown
- Dedicated Process Studies to understand the link between E-P(-R) and SSS
- ➤ SPURS-1 was located in the North Atlantic Salinity Maximum (subtropical gyre), 2012-2013
- ➤ SPURS-2 was located in the East Pacific Fresh Pool under the Intertropical Convergence Zone (ITCZ)

In Situ Sampling

- Argo Float Distribution, realistically sampling 2.5 x 2.5 ° every month
- Sampling depth mismatch

In Situ – Satellite Match-Ups

- We match each in situ observation with L2 SMAP data...
- 50km, +/- 3.5 day search, averaging all data
- Overall excellent, some remaining problems with RFI/Galaxy/Land

In Situ – Satellite Match-Ups

- Same search criteria as before, but taking the absolute value
- Mean absolute difference for the duration of SMAP (May 2015 Mar 2019)

SPURS-1: Evaporation Dominated

- ➤ Salt is a useful tracer (Isohaline Budgeting): Mean advection along constant salinity, balance between surface fluxes and lateral and vertical mixing.
- > Bryan and Bachman, 2015; Schmitt and Blair, 2015.

SPURS2: Precipitation Dominated

- ➤ Moderate (1-1.5 m/yr) Evaporation (OAFlux 3)
- Heavy precipitation (~3m/yr) (GPCP 2.2)

Ш

The Precipitation Problem (II)

➤ Peak precipitation ~10mm/hr in the ITCZ

The Precipitation Problem

- Precipitation is extremely patchy
- > IMERG is considered "high resolution"
- > Stratiform vs convective rain (bad news for

Ш

Salinity Snake (II)

'Slow snake' intake (floating)

ΔSSS

➤ Difference between radiometric depth (1-2 cm) and bulk (5m) salinity, clearly wind speed dependent!

Ш

In Situ Sampling

- Systematic vertical ΔSSS (5m-0m) in ITCZ (<12°) from SPURS-2 salinity snake deployments is 0.07 g/kg</p>
- > Patchy rain causes freshwater lenses, filaments, fronts...
- ➤ These features increase the RMSD (not RMSE) between in-situ and satellite observations -> 0.17 g/kg
- Sub-footprint variability may be underestimated when using bulk salinity measurements (~5m):
 - Horizontal variance decreases with depth (RR1720, ITCZ)

Salinity Snake	USPS 2m	USPS 3m	TSG 5m
0.26	0.19	0.18	0.16

... consequently a problem for state estimates, too, even when using L3 data

A Case Study: SPURS-2 Freshwater Lens

- Very good match-up between Salinity Snake and SMAP
- Low wind speeds (2-5 m/s), vessel has just turned to 090T, steaming East through the freshwater
- Note the rain (>100mm in less than 2 hours)

A Case Study: SPURS-2 Freshwater Lens

- 50 kmfeature with4 g/kg peakfreshening
- Evident in SMAP
 - Anomalies visible in SMAP and SMOS
 - Enhanced mixing and interleaving

A Simple Model to Explain Dissipation

The Take-Home

- ➤ The Global Ocean Freshwater Cycle and Salinity are intrinsically linked
- Evaporation and Precipitation occur on very different space and time scales
- > Estimates of E and P are (highly) questionable in the tropics
- Satellite SSS, especially SMAP, has become incredibly useful
- Salinity budgets help in understanding the surface flux/advective/diffusive balance
- Small scale patchiness (particularly in the ITCZ) is underestimated

