# Heat content, heat fluxes and feedbacks

# LuAnne Thompson Walters Professor of Oceanography University of Washington

Kathie Kelly (UW-APL retired), and Julie Ann Koehlinger (UW), Cristian Proitesescu (UW/Atmospheric Sciences), Greg Johnson (NOAA/PMEL), Kyle Armou (UW/Ocean/Atmospheric Sciences)

Funding: NASA Ocean Surface Topography Science Team and NASA Physical Oceanography

#### Net shortwave radiation at surface

$$Q_{\text{NET}} = Q_{\text{SW}} + Q_{\text{LW}} + Q_{\text{L}} + Q_{\text{S}}$$



Large over the oceans, depends on latitude

### Net longwave radiation at surface

$$Q_{\text{NET}} = Q_{\text{SW}} + Q_{\text{LW}} + Q_{\text{L}} + Q_{\text{S}}$$



40-60 Watts/m<sup>2</sup> over the oceans

#### Latent heat flux at surface

$$Q_{\text{NET}} = Q_{\text{SW}} + Q_{\text{LW}} + Q_{\text{L}} + Q_{\text{S}}$$



30-200 Watts/m<sup>2</sup> over the oceans, large in boundary currents

#### Sensible heat flux at surface

$$Q_{\text{NET}} = Q_{\text{SW}} + Q_{\text{LW}} + Q_{\text{L}} + Q_{\text{S}}$$



30-60 Watts/m<sup>2</sup> over the oceans, larger in boundary currents

Spatially, the ocean regionally takes up and releases heat ~100 Watts/m² (global warming update ~1 Watts/m²)



Net surface flux from the atmosphere to the oceans Watts/m<sup>2</sup>: implied ocean heat transport convergence

### Paradigm #1:

 Net air-sea flux is driven by the mean ocean heat transport convergence



### Paradigm #2:

Anthropogenic climate change warms the ocean

### Global Energy Flows

(IPCC, 2013)



- •Imbalance of  $\sim 0.6 \text{ W m}^{-2}$  (not into corn fields though *into the ocean!*)
- •"Small" difference of big numbers measuring storage change robust?

## Thermal Energy Storage

(IPCC, 2013)

#### Observational Assessment:

- •0.4 W m<sup>-2</sup> 1971–2010
  - •Ocean 93%
  - •Ice melt 3%
  - •Land 3%
  - Atmosphere 1%
- •0.5 W m<sup>-2</sup> 1993-2010
- •Sparser observations make uncertainties larger earlier in time.



### Paradigm #3:

Changes in ocean heat transport convergence control air-sea heat exchanges

Paradigm #4 Changes in ocean heat transport convergence control air-sea heat exchanges

$$\rho_{ocean} H_{ocean} c_p \frac{dT_{ocean}}{dt} = -\rho_{ocean} H_{ocean} c_p \nabla \cdot \vec{u} T - Q_{surface}$$



On monthly to interannual time scales: what controls SST/Heat content anomalies and airsea heat fluxes: Focus on the North Atlantic

ECCO heat budget Buckley et al (2014) Observational analysis

# Buckley et al, 2014. Use ECCO to construct closed heat budgets for the North Atlantic, down to $H_{max}$ =maximum MLD, $H = \rho C_p H_{max}$

Local forcing explains H

Ocean heat transport convergence explains H

Diffusion and Bolus fluxes control H





### Paradigm #4:

Over much of the subtropical oceans, atmosphere controls the interaction with atmospheric noise forcing SST anomalies which are then damped by atmospheric fluxes Frankignoul and Hasselman (1977), Cayan (1992)

### Paradigm #3+#4:

 Include the potential of both atmospheric forcing and oceanic forcing

### Barsugli and Battisti (1998) oceanatmosphere interaction Ocean-noise added Wu et al (2006) (nonseasonal anomaly model)

Atmosphere noise

Add ocean "noise"

$$\rho_{atmos}c_{atmos}H_{atmos}\frac{dT_a}{dt} = \lambda (T_o - T_a) - \lambda_a T_a + N_a$$

$$\rho_{ocean} c_{ocean} H_{ocean} \frac{dT_o}{dt} = -\lambda (T_o - T_a) - \lambda_o T_o + N_o$$

Latent +sensible (turbulent) surface heat flux Q<sub>turb</sub>

Radiative cooling

Long wave radiation

Ocean noise

Cean heat transport convergence anomalies

For a given frequency distribution of Ta and To, depends on two parameters

- 1. Depth of the ocean (controls ocean heat capacity)  $H_{ocean}$
- 2. Ratio of atmosphere to ocean forcing  $N_o/N_a$

$$\rho_{atmos}c_{atmos}H_{atmos}\frac{dT_{a}}{dt} = \lambda (T_{o} - T_{a}) - \lambda_{a}T_{a} + N_{a}$$

$$\rho_{ocean}c_{ocean}H_{ocean}\frac{dT_{o}}{dt} = -\lambda (T_{o} - T_{a}) - \lambda_{o}T_{o} + N_{o}$$

$$\lambda_{a} \sim \lambda_{o} << \lambda$$

How much impact does the T<sub>o</sub> have on air-sea fluxes?

## Weak ocean noise 50m depth ocean (Atmosphere controls) Paradigm #4 (Frankignoul)



 $Q = \lambda (T_o - T_a)$  positive for cooling the ocean

#### **Moderate ocean forcing, Paradigm #4 (Frankignoul)**



### Strong ocean noise: Ocean controls, Paradigm #4



 $Q=\lambda(T_o$ - $T_a$ ) positive for cooling the ocean Highly correlated with ocean temperature

Lagged correlation structure: depends on the relative strength of ocean and atmospheric noise: 25 m ocean.



Focus on the North Atlantic Investigate lagged regressions between SST and Q

Perform a cluster analysis





Strong ocean forcing



Moderate ocean forcing

Weak ocean forcing

## Sea surface height mirrors the temperature structure: high temperature $\rightarrow$ high SSH



## Using sea level can be used as a proxy for heat content. 1993-1999

(Lyman and Johnson, 2014, 1993-2011)

Monthly local sea level determined by thermosteric (thermal expansion), and halosteric (haline contraction). Thermosteric dominates in tropics and subtropics







## Using observations to look at the relationship between the heat content/SST and surface flux 1993-2016

Smooth both with 300 km full width at half max Gaussian smoother

| Observational Analysis variables                                      | Source                                                                                            | Comment                                    |
|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------|
| Sea surface<br>height (SSH)                                           | Monthly maps of sea<br>level anomaly from<br>Ssalto/Duacs<br>1/4° x 1/4°, Mercator<br>grid, Aviso | Used as proxy for upper ocean heat content |
| SST, Turbulent heat flux Q <sub>turb</sub> Sensible +latent heat flux | OAflux: Objectively Analyzed air-sea fluxes for the Global Oceans (Yu and Weller, 2007)           | Fluxes are positive for cooling the ocean. |







Strong ocean noise



What does this mean for air-sea interaction? Define a feedback: how much  $Q_{turb}$  do you get for a 1°C SST anomaly? Frankignoul et al, 1998 (monthly fields).

 $\lambda_{SST} = \frac{R_{TQ_{turb}}(\tau_{SST})}{R_{TT}(\tau_{SST})}$  Autocorrelation coefficient

# Monthly SST feedback Watts/m<sup>2</sup>/°C



# Low Frequency SST feedback Watts/m<sup>2</sup>/°C



# Monthly SSH feedback Watts/m²/cm



# Interannual SSH feedback Watts/m²/cm





 $H_{\text{effective}}$ 

If the upper ocean warms, the water expands →

$$\eta = H_{eff} \alpha \Delta T$$

$$H_{eff} = \frac{\lambda_{T}}{\alpha \lambda_{\eta}}$$

# H<sub>eff</sub> is bigger than the mixed-layer depth in some places (monthly time scales)



# H<sub>eff</sub> is bigger than the mixed-layer depth in some places (Interannual time scales)



# Some of the heat that is release must be fed from the side → H<sub>eff</sub>>H<sub>MLD</sub>



### **Paradigms**

- 1. Net air-sea flux is driven by the mean ocean heat transport convergence
- 2. Anthropogenic climate change warms the ocean
- 3. SST forced by atmospheric noise are then damped by surface fluxes
- 4. Changes in ocean heat transport convergence control air-sea heat exchanges
- 5. Atmospheric fluxes drive ocean changes with little short term feedback







#4 The Gulf Stream: ocean forces heat content anomalies that force Q

#3 Subtropical gyre, atmosphere controls Q, forces heat content/SST anomalies, that are fed back to the atmosphere

#5 Subpolar gyre, atmosphere forces, and no immediate feedback to atmosphere