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Why gradients?

» Optimization (inversion, least-squares estimation)
» Comprenensive sensitivity analysis
» Uncertainty characterization and quantification

» Non-normal transient amplification/growth (singular vectors)
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Why gradients? Optimization!

>
- a set of (possibly different types of) observations
- anumerical model & set of initial/boundary conditions, parameters
> L (estimation / optimal control problem)
Find “optimal” model trajectory consistent with available observations
> -h: seek minimum of least square cost function

min {J(@)} = min {Z[model,(i) - data@-]g}

— seek| V,.7 (i) |toinfer update A& from variation o],

1 5 5
't = @ 4+ A

> see ECCO ’
- optimal/consistent ocean state estimate i ‘/

- adjusted initial/boundary value estimates % :
X
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Why gradients? Optimization!

3, (model; — data; )*

T[] state space
' T o(aM, 1)

fffffffffffffffffffffffff b cONtrol Space
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Why gradients? Sensitivities!

» Finite difference approach: » Reverse/adjoint approach:
e Take “guessed” anomaly (e.g. e Calculates “full” sensitivity field
i e i ai t
SST) and determlne its impact %
on model output (ice export) « Approach: Let
e Perturb each input element J = export, i = SST(i, j)
(8ST(¢,4)) to determine its im-
pact on output (ice export). — | VuJ (1) | = %
Impact of one input on all outputs Sensitivity of one output to all inputs

- -

Y

forward or finite difference approach adjoint approach
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Why gradients? Uncertainties!

» Consider linear approx. of cost function

(M) —d)" w (Mm@ -d)"

i — )T (%)TW (%) (i —

» Compare to multivariate Gaussian distribution

1
J(ﬁ)ZE
1
2

14

—_

N (dp, X) o exp {(ﬁ’f ip)T =1 (7 — uo)]

» posterior error covariance matrix ¥ is inverse
of Hessian H of 7 () at minimum:

H = d2.7 (tiopt)

- (20w (2 (2w (sai) -

» Eigenvalues of H: principal curvatures

e r;. principal curvatures
largest EV =1y

g — conditioning number e det(H ~1): Gauss curvature
smallest EV e trace (H~1): mean curvature
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Why gradients? Non-normal Transient Amplification!

» Consider stable linear system

daLf) — M), (1) — 0fort — o

» If Misnon-normal, M - MT +# MT . M, non-orthogonal eigenvectors:

A1 Aot

O(t) = ayui e’ + azpe

» If decay timescales very different, i.e. A1 << A2 < 0, then
e ay uy e decays quickly,removing partial cancelation of EV’s
¢ causing transient amplification for ¢ ~ 1
o leaving mostly @(t) ~ ag et — 0fort — oc.

optimal
]

—_—,

15 aq U1

a1 Ui (‘Al :"_
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Introduction

A simple example
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Introduction — a simple example

Consider model, L, mapping 2-dim. vector x to y:

Y1 0 a 351 ax
= L X) = = J = ]_
o e BN e e
Now, assume observations [d; d]” are available for the two
elements [y;  y»]7, and we can write a misfit or cost function:

Least-squares cost/objective function

1 1
Jo = Jly) = - (1 —d)* + = (y2 — )’
1

)

()

1 1
= - (aX2 — d1)2 + — (—bX1 — d2)2
o 03

with o1, oo prior errors (special case of inverse error covariance).
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Introduction — a simple example

Can view Jy as a composite mapping
Jo = Jo(y) = Jo(L(x)),
such that
Jo: x +— y — by

x +— L[x] — S[L[x]] (3)
IR — IR" +— IR

» Find the gradient of Jy with respect to the input variable x.

» Note that, alternatively, or in addition, we could also be
interested in the gradient of Jy with respect to the model
parameters p = [a b]" — will come back to later.
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Introduction — a simple example

Of course, the example chosen is very simple, and from eqn. (2)
we can readily write down the gradient:

The gradient (with respect to x)

B[ hes)

DONE!
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Introduction — some terminology

» dependent versus independent variables:

o Jo (or L): dependent variable whose gradient is sought
(cost/objective function; target quantity of interest — Qol)
often scalar-valued!

o 7 or x(0): independent or control variables
variables with respect to which the dependent variable is
differentiated

» forward / reverse mode:

e tangent linear model: forward mode
e adjoint model: reverse mode

» active, passive, required variables:

e.g., for Jo = a°x3 + x&:
o active: x1, xp (variables that are subject to differentiation)
o passive: a (variables NOT subject to differentiation)
e required: xi, xp (variables needed to evaluate derivative)
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Introduction — a simple example

The conventional approach: directional derivative

0o Jo(x+ee;) — Jo(x)

8X,' €

for small €, and required for each direction e;

es=[1 07, e=[0 1]7

Serveral shortcomings:

» If the dimension of x was very large (e.g. 107 instead of 2)
and calculation of Jy expensive, performing 107 perturbation
calculations would be prohibitive;

» Accuracy depends on coice of € and finite-differencing scheme
used (here we used the simplest possible)
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Introduction — a simple example

Consider how perturbations dx in x are mapped to perturbations
dy in y = Lx. We define the linearized model dL via

0y = dL x

[&q } . {(m ] [ 226x + Sk
5x Sy2 | gﬁ Sxi + 9 0% 22 6,
dy1 Iy
— | 9 gﬁ][giﬂ
L Ox1  Oxo 2
[ o a}_[éxl}_[ 20x ]
L —-b 0 (5X2 —b(SXQ

(5)
N.B.: Since L is linear, the Jacobian dL is identical to L (a choice

to simplify our calculation for now).
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Introduction — a simple example

Now, consider the total variation of Jy with respect to y:

8./0 8J0 8JOT
Jo By y1 + 3y, y2 < By Y> (6)
with general inner product < ., . >.

We can obtain gradient using formal definition
< ATx,y >=< x, Ay > of the adjoint:
A

o= <8‘°£)T’ ) (7)
- <%£’T, dL(5x> - <dLT%J;’T, (5x> - <%{fT, 6x>
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Introduction — a simple example

We obtain general expressions for the tangent linear model and its
dual, the adjoint model:

dJy : Ox — dy=dL-6x — 0Jp=V,J-dy

(8)
d*Jo: §*x=dLT -5y «— §y=V, S <+ =1

with
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Introduction — a simple example

For our example, we obtain:

2 2
dJo = (y1 —d1)dy1 + 2 (y2 — do) 0y

o2 2
- _azf(n—dl) é(yz—dg)] | [ gﬁ]
— :sz(axz_dl) é(_bxl_dZ)} ' [_2 8][22]
_ _Zs(_bxl d>) —%(aXQ dl)] [ g))il ]
(10)
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Introduction — a simple example

* _2b(_ _
5x — [6x1]: [ gg( bxq d2)]
o1

5*X2 7(3X2 — dl)
0 —b Z(ae—di) | (1)
a 0 ?(_bxl - d2)
2

= dLT - &'y -6 Uy

with 6*Jp = 1
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Introduction: change of control space — same model,

different adjoint!

“THE" adjoint model?
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Introduction: change of control space — same model,

different adjoint!

Consider sensitivity of Jg, not with respect to state x,
but with respect to model parameters p=1[a b]”.

Direct differentiation yields:

and:
_ 0d dJo
_ | 2 _ 20 . x 0 da
— a% (aX2 dl) 05( bX1 dg) } . [ 0 —x :| . |: (5b :|
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Introduction: change of control space — same model,

different adjoint!

We can readily deduce:

N 0*a
5":[5*1)]_

%(aXQ — dl)X2

[ —é(—bxl — dl)Xl ]
%(3X2 — dl) N (12)
J [ 2(~ba — ) ] 0

X2 0
0 —x1

bx 1 —

di7 - 8%y -6*Jy

with corresponding mapping relationship:

d_/o o

d*Jp :

op

— dy(p)=dL-op — Oy =

Fp=dLT . *y +—

SFy=V, il —

v, Jo

=1

-0

Patric
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Introduction: preliminary lessons

» There isn't such a thing as “the adjoint model”!
Its form depends crucially on the control problem formulated.

» A strengths of algorithmic differentiation is the fact that it
can deal much more flexibly with changes to the formulation.

» Itisn't even clear what is meant by “the adjoint model”:

e mathematicians refer to the entire expression | dL” - §*y - 6* Jy
as the adjoint of the mapping Jo(L(x)),
e physicists think of L as “the model”, dL as “the Jacobian”,
and only as “the adjoint*;
» The expressions for §*y = VyJ(;r remain the same, and it is
really dL vs. dL (and their transpose) which change the
overall TLM and ADM.
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Introduction: can also compute the “joint gradient”

Homework
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The time-varying problem

The time-varying problem
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The time-varying problem

Consider time-evolving model:

x(t) — L[x(t—1)] = 0 (14)

Define objective function:
time-mean volume over last n+ 1 timesteps tr — n, ..., tr — 1, tr:

Jolx] = niI(V[x(tf— M+ VIE)]) (1)

Define Lagrangian:

J=Jo[x] = Y wT({x(t) - Lx(t—1)] } (16)
1
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The time-varying problem: set of normal equations

aJ oJ
ox(t) = axi(ot) —n(t)

.
n [%Lx(%)]] ut+1)=0 O0<t<tr (17b)

oJ 0Jo

=x(t)—L[x(t—1)]=0 1<t<tr (17a)

= —u(tr) =0 t=tr (17¢)

8X(tf) 8x(tf)

0J 9 [oLx(0)]]"
x(0) — Bx(0) [ 2x(0) ] (1)

to=0 (17d)
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The time-varying problem: adjoint time-stepping

Successive evaluation backward in time, starting at t = ty:

9h 1 aVx(te)]
utr) = ax(ff) T o+l ax(tf;

n+ 1 time steps earlier, at t = tf — n, and using the results of

u(te), ..., u(tr — n+ 1), we obtain:
1 oV [x(tr — n)]
u(tr = n) _n—i—l{ ox(tr — n)
L [ALx(te = )] T OVIx(tr —n+1)]
| Ox(tr —n) | ox(tr —n+1)
T (18)
OL[x(tr — )7 oLx(tr —1)]]"
T ok —n) | [ ox(tr —1) }
_ 8V[x(t,c)]}
8x(tf)
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The time-varying problem: interpretation

» Lagrange multiplier u(t) provides complete sensitivity of Jy at
time t by accumulating all partial derivatives of Jy with

respect to x from each time step tr, tr — 1, ..., t
» Those partials taken at later times t + 1, ..., tr, are
propagated to time t via the adjoint model (ADM), which is
T
the transpose [aLx[?t()t)]} of the model Jacobian or tangent
; Ox(t+1) _ OL[x(¢)]
linear model (TLM), 6 X(0)

» contributions from different times linearly superimposed

» Simplifying the example objective function: instead of the
time-mean, only the volume at the last time ste tr is chosen:
dV X tf 5) .
now all terms except the one containing vanish
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The time-varying problem: the chain rule

Jbo: x(0) — y=x(tr) +r— Jolyl
x(0) — L[x(tr—1)] > VI[L[x(tr —1)]]

is composite mapping for special case, Jo = V[x(tr)] = Vy]

Jo = V[X(tf)]
= VIL[L[. .. Lx(0)]]]]
and corresponding perturbation:
A

5y = af(\;)éx(tf)
oV Ox(tr) ox(1)

- 0x(0)

T Ox(tr) ox(tr—1) " 9x(0)
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The time-varying problem: the chain rule

5Jo = < af(\;) ‘ TLM-ch(O)> - <ADM : af(\;) ] 5x(0)>

Compare ADM with expression for Lagrange multipliers.
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3-box model of the THC

3-box model of the THC

Inspired by work with Laure Zanna & Eli Tziperman (2010)
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3-box model of the THC: overview

DO t = 1, nTimeSteps

@ calc. density

p=—aT + S

@ calc. thermohaline transport ‘

U = U(p(T, $)) |

@ calc. tracer advection

%Tr = f(Tr,U)

@ calc. timestepping, update
tracer fields Tr = {T,S}

END DO
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3-box model of the THC: overview

pi= —aT; + BS;

U:uo{pz—[Hp1+(1—H)ﬂs]} ‘

dT;

9 (T, —

p” U(T2—T3)/ V3 —
dSs

e U(S:—S3)/ Vs
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3-box model: consider advection equation for T3

% = U(T3 — Tg), for U >0
diffT3 = ux* (T3 —T2)

» total derivative:

SAiffT3 8diffT36U " adiffTB(ST n 8diffT35T
1 = — S -
au oT, = 2 oTs  °
» in matrix form:
. A . A—1
0diffT3 0 -U U T3—-T1 0diffT3
T3 o 1 0 o _ T3
0T, - 0 1 0 0T,
oU 0O 0 O 1 ou
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3-box model: consider advection equation for T3

» Transposed relationship yields:

A—1

0*diffT3 0 0O 0 O 0*diffT3
0*T3 _ —U 1 0 O 0*T3
5*Ty - U 010 5*Ty
0*U T3—T1 0 0 1 0*uU
» and thus adjoint code:

adT3 = adT3 - uxaddiffT3

adT2 = adT2 + uxaddiffT3

adU = adu + (T3-T2)*addiffT3
addiffT3 = 0

Note: state T2, T3,U are required to evaluate derivative
at each time step, in reverse order!
— TANGENT linearity
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Reverse order integration (i)

DO istep = 1, nTimeSteps DO istep = nTimeSteps, 1, -1
call density(p)

call transport(U) @ DO iaux = 1, istep
call density(p)
call transport(U

call timestep(T,
call update(T,S)

END DO

call timestep(T,S)
call update(T,S)

)
S)

END DO

call adupdate(T,S)
call adtimestep(T,S)

call adtransport(U)
@ call addensity(p)

END DO
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Reverse order integration (ii)

DO iOuter = 1, nOuter
(]
@ DO ilnner = 1, nlnner

e call density(p)
o call transport(U)

o call timestep(Tr)
e call update(Tr)
END DO

END DO

Patrick Heimbac

DO iOuter = nOuter, 1, -1

(]
@ DO iInner = 1, nlnner

call density(p)
call transport(U)
CADJ STORE T, S, U
call timestep(Tr)
call update(Tr)

END DO

@ DO iInner = nInner, 1, -1

call adupdate(adTr)

call adtimestep(adTr)

CADJ RESTORE T, S, U

call adtransport(adl)

call addensity(adp)
END DO

END DO
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Reverse order integration (iii)

Y

dvgrevs advevs

n—1
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» Adjoint evaluated in reverse » Solution: Checkpointing

— model state at every time step e.g. Griewank (1992),

required in reverse Retrepo et al. (1998)
— all state stored or recomputed storing vs. recomputation

l'k[[—f v3 l'A_l'm'B l';\[fif l!\g{ v3

|H\H‘HH\‘\HH‘H\H|H\H‘H\H‘HHI‘\HH|HH\‘\HH‘\HH‘HMl

1 1 \{ e Vilev2

! ! K R

! ! ‘\HH‘H\H‘H\H‘\HM

1 1 | | | !

! ' i i 3 %‘A,gtﬁl-L

| = Y

= = v

: : C o

1 1

: : it

1 1

y Y

a a



Reverse order integration (iv)

» e.g. 3-level checkpointing:

NTimeSteps = N1 - N2 - N3

— Storing: reduced from ny - ny - n3  to

e disk: ny + n3,
e memory: m

— CPU: 3 forward + 1 - adjoint = 5.5 - forward

» Closely related to adjoint dump & restart problem.
Available queue sizes at HPC Centres may be limited

» Insertion of store directive requires detailed knowledge
of code and AD tool behaviour
— not easy (“semi-automatic” differentiation only)
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Ensure correctness of TLM or ADM derived gradient

Procedures to check that AD-derived gradient G7¢ is correct:
consider perturbation of i-th control vector element u; and Ad; = §j;

finite difference vs. adjoint tangent linear vs. adjoint
Gl = Tt I (i) = VT 8 = (VT ).
1
G
R =1- 27 Rif=1- 3

i i

— can test 'correctness’ of ADM and TLM gradients G,-"d

— can test 'time horizon’ of linearity assumption

Other approaches: e.g., Taylor remainder test (Patrick Farrell)
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Input/Output — active file handling

I/O of active variables should be accounted for in derivative
READ assigning a value to a variable

WRITE referencing a variable

code hypothetical code adjoint hypothetical code adjoint code
OPEN(8) ADXD = 0. OPEN(9)
XD = X ADXD = ADXD + ADZ WRITE(9) ADZ

ADZ = 0. ADZ = 0.
READ(8) Z Z = XD ADX = ADX + ADXD

ADXD = 0.

ADXD = 0.

CLOSE(8) CLOSE(9)

from Giering & Kaminski (1998)
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Scalability

e domain decomposition (tiles) & overlaps (halos)
e split into extensive on-processor and global phase

c Exchange

HH o = J Global Sum

T HT

i
EEmmE;

Global communication/arithmetic op.'s supported by MITgem's
intermediate layer (WRAPPER)

operation/primitive forward reverse
communication (MPI,...): send  <— receive
arithmetic (global sum,...):  gather —+«+— scatter
active parallel 1/0: read +—  write
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Why Algorithmic/Automatic Differentiation (AD)?

» Inaccuracy of finite-differences has negative impact on convergence
of your algorithm.
You need exact derivatives.

» The dimension (n ~ O(10%)) of your problem is too lage for
finite-difference or directional derivatives (tangent linear model) to be
feasible approaches.

You need efficient/cheap gradients.

» Your numerical code changes over time due to improvements,
restructuring, new insights resulting from ongoing research and
development. The corresponding derivative codes need to be
updated too. Many man hours may be involved (and error-prone).
You need a derivative code “compiler”.

» Changing the control space (i.e. type of independent variables) may
change structure of the derivative code.
You need automated way to re-generate derivative code.
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