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Why gradients?

I Optimization (inversion, least-squares estimation)

I Comprenensive sensitivity analysis

I Uncertainty characterization and quantification

I Non-normal transient amplification/growth (singular vectors)
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Why gradients? Optimization!
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Why gradients? Optimization!
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Why gradients? Sensitivities!
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Why gradients? Uncertainties!
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Why gradients? Non-normal Transient Amplification!

Patrick Heimbach Intro to Adjoints and AD



Introduction

A simple example
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Introduction – a simple example

Consider model, L, mapping 2-dim. vector x to y:

Model

y = L(x) =

[
y1
y2

]
=

[
0 a
−b 0

]
·
[
y1
y2

]
=

[
a x2
−b x1

]
(1)

Now, assume observations [d1 d2]T are available for the two
elements [y1 y2]T , and we can write a misfit or cost function:

Least-squares cost/objective function

J0 = J0(y) =
1

σ21
(y1 − d1)2 +

1

σ22
(y2 − d2)2

=
1

σ21
(ax2 − d1)2 +

1

σ22
(−bx1 − d2)2

(2)

with σ1, σ2 prior errors (special case of inverse error covariance).
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Introduction – a simple example

Can view J0 as a composite mapping

J0 = J0(y) = J0(L(x)),

such that

J0 : x 7−→ y 7−→ J0[y]
x 7−→ L[x] 7−→ J0[L[x]]

IRm 7−→ IRn 7−→ IR
(3)

I Find the gradient of J0 with respect to the input variable x.

I Note that, alternatively, or in addition, we could also be
interested in the gradient of J0 with respect to the model
parameters p = [a b]T – will come back to later.
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Introduction – a simple example

Of course, the example chosen is very simple, and from eqn. (2)
we can readily write down the gradient:

The gradient (with respect to x)

∇xJ
T
0 =

[
∂J0
∂x1
∂J0
∂x2

]
=

[
−2b
σ2
2

(−bx1 − d2)
2a
σ2
1

(ax2 − d1)

]
(4)

DONE!

Patrick Heimbach Intro to Adjoints and AD



Introduction – some terminology

I dependent versus independent variables:

J0 (or L): dependent variable whose gradient is sought
(cost/objective function; target quantity of interest – QoI)
often scalar-valued!
~u or x(0): independent or control variables
variables with respect to which the dependent variable is
differentiated

I forward / reverse mode:

tangent linear model: forward mode
adjoint model: reverse mode

I active, passive, required variables:

e.g., for J0 = a2x22 + x21 :

active: x1, x2 (variables that are subject to differentiation)
passive: a (variables NOT subject to differentiation)
required: x1, x2 (variables needed to evaluate derivative)
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Introduction – a simple example

The conventional approach: directional derivative

∂J0
∂xi

=
J0(x + ε ei ) − J0(x)

ε

for small ε, and required for each direction ei

e1 = [1 0]T , e2 = [0 1]T

Serveral shortcomings:

I If the dimension of x was very large (e.g. 107 instead of 2)
and calculation of J0 expensive, performing 107 perturbation
calculations would be prohibitive;

I Accuracy depends on coice of ε and finite-differencing scheme
used (here we used the simplest possible)

Patrick Heimbach Intro to Adjoints and AD



Introduction – a simple example

Consider how perturbations δx in x are mapped to perturbations
δy in y = Lx. We define the linearized model dL via

δy = dL δx

[
δx1
δx2

]
7−→

[
δy1
δy2

]
=

[
∂y1
∂x1
δx1 + ∂y1

∂x2
δx2

∂y2
∂x1
δx1 + ∂y2

∂x2
δx2

]

=

[
∂y1
∂x1

∂y1
∂x2

∂y2
∂x1

∂y2
∂x2

]
·
[
δx1
δx2

]
=

[
0 a
−b 0

]
·
[
δx1
δx2

]
=

[
a δx1
−b δx2

]
(5)

N.B.: Since L is linear, the Jacobian dL is identical to L (a choice
to simplify our calculation for now).
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Introduction – a simple example

Now, consider the total variation of J0 with respect to y:

δJ0 =
∂J0
∂y1

δy1 +
∂J0
∂y2

δy2 =
〈∂J0
∂y

T

, δy
〉

(6)

with general inner product < . , . >.

We can obtain gradient using formal definition
< AT x , y >=< x ,Ay > of the adjoint:

δJ0 =
〈∂J0
∂y

T

, δy
〉

=
〈∂J0
∂y

T

, dL δx
〉

=
〈
dLT

∂J0
∂y

T

, δx
〉

=
〈∂J0
∂x

T

, δx
〉 (7)

Patrick Heimbach Intro to Adjoints and AD



Introduction – a simple example

We obtain general expressions for the tangent linear model and its
dual, the adjoint model:

dJ0 : δx −→ δy = dL · δx −→ δJ0 = ∇yJ0 · δy

d∗J0 : δ∗x = dLT · δ∗y ←− δ∗y = ∇yJ
T
0 ←− δ∗J0 = 1

(8)

with

δ∗x = ∇xJ
T
0 =

∂y

∂x

T

· ∂J0
∂y

T

· δJT0 (9)
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Introduction – a simple example

For our example, we obtain:

δJ0 =
2

σ21
(y1 − d1) δy1 +

2

σ22
(y2 − d2) δy2

=

[
2

σ21
(y1 − d1)

2

σ22
(y2 − d2)

]
·
[
δy1
δy2

]
=

[
2

σ21
(ax2 − d1)

2

σ22
(−bx1 − d2)

]
·
[

0 a
−b 0

]
·
[
δx1
δx2

]
=

[
−2b

σ22
(−bx1 − d2)

2a

σ21
(ax2 − d1)

]
·
[
δx1
δx2

]
(10)
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Introduction – a simple example

δ∗x =

[
δ∗x1
δ∗x2

]
=

[
−2b
σ2
2
(−bx1 − d2)

2a
σ2
1
(ax2 − d1)

]

=

[
0 −b
a 0

]
·

[
2
σ2
1
(ax2 − d1)

2
σ2
2
(−bx1 − d2)

]
· δ∗J0

= dLT · δ∗y · δ∗J0

(11)

with δ∗J0 = 1
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Introduction: change of control space – same model,
different adjoint!

“THE” adjoint model?
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Introduction: change of control space – same model,
different adjoint!

Consider sensitivity of J0, not with respect to state x,
but with respect to model parameters p = [a b]T .

Direct differentiation yields:

∇pJ
T
0 =

[
∂J0
∂a
∂J0
∂b

]
=

[
2
σ2
1

(ax2 − d1) x2

− 2
σ2
2

(−bx1 − d2) x1

]

and:

δJ0 =
∂J0
∂a

δa +
∂J0
∂b

δb

=
[

2
σ2
1

(ax2 − d1) − 2
σ2
2

(−bx1 − d2)
]
·
[
x2 0
0 −x1

]
·
[
δa
δb

]
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Introduction: change of control space – same model,
different adjoint!

We can readily deduce:

δ∗p =

[
δ∗a
δ∗b

]
=

[
2
σ2
1
(ax2 − d1)x2

− 2
σ2
2
(−bx1 − d1)x1

]

=

[
x2 0
0 −x1

]
·

[
2
σ2
1
(ax2 − d1)

2
σ2
2
(−bx1 − d2)

]
· δ∗J0

= dL̃T · δ∗y · δ∗J0

(12)

with corresponding mapping relationship:

dJ0 : δp −→ δy(p) = dL̃ · δp −→ δJ0 = ∇yJ0 · δy

d∗J0 : δ∗p = dL̃T · δ∗y ←− δ∗y = ∇yJ
T
0 ←− δ∗J0 = 1

(13)
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Introduction: preliminary lessons

I There isn’t such a thing as “the adjoint model”!
Its form depends crucially on the control problem formulated.

I A strengths of algorithmic differentiation is the fact that it
can deal much more flexibly with changes to the formulation.

I It isn’t even clear what is meant by “the adjoint model”:

mathematicians refer to the entire expression dLT · δ∗y · δ∗J0
as the adjoint of the mapping J0(L(x)),
physicists think of L as “the model”, dL as “the Jacobian”,

and dLT only as “the adjoint“;

I The expressions for δ∗y = ∇yJ
T
0 remain the same, and it is

really dL vs. dL̃ (and their transpose) which change the
overall TLM and ADM.
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Introduction: can also compute the “joint gradient”

Homework
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The time-varying problem

The time-varying problem
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The time-varying problem

Consider time-evolving model:

x(t) − L [x(t − 1)] = 0 (14)

Define objective function:
time-mean volume over last n + 1 timesteps tf − n, . . . , tf − 1, tf :

J0[x] =
1

n + 1

(
V [x(tf − n)] + . . .+ V [x(tf )]

)
(15)

Define Lagrangian:

J = J0[x] −
tf∑
1

µT (t)
{
x(t) − L [x(t − 1)]

}
(16)

Patrick Heimbach Intro to Adjoints and AD



The time-varying problem: set of normal equations

∂J

∂µ(t)
= x(t)− L [x(t − 1)] = 0 1 ≤ t ≤ tf (17a)

∂J

∂x(t)
=

∂J0
∂x(t)

− µ(t)

+

[
∂L[x(t)]

∂x(t)

]T
µ(t + 1) = 0 0 < t < tf (17b)

∂J

∂x(tf )
=

∂J0
∂x(tf )

− µ(tf ) = 0 t = tf (17c)

∂J

∂x(0)
=

∂J0
∂x(0)

−
[
∂L[x(0)]

∂x(0)

]T
µ(1) t0 = 0 (17d)
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The time-varying problem: adjoint time-stepping

Successive evaluation backward in time, starting at t = tf :

µ(tf ) =
∂J0
∂x(tf )

=
1

n + 1

∂V [x(tf )]

∂x(tf )

n + 1 time steps earlier, at t = tf − n, and using the results of
µ(tf ), . . . , µ(tf − n + 1), we obtain:

µ(tf − n) =
1

n + 1

{
∂V [x(tf − n)]

∂x(tf − n)

+

[
∂L[x(tf − n)]

∂x(tf − n)

]T
· ∂V [x(tf − n + 1)]

∂x(tf − n + 1)

+ . . .

+

[
∂L[x(tf − n)]

∂x(tf − n)

]T
· . . . ·

[
∂L[x(tf − 1)]

∂x(tf − 1)

]T
· ∂V [x(tf )]

∂x(tf )

}
(18)
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The time-varying problem: interpretation

I Lagrange multiplier µ(t) provides complete sensitivity of J0 at
time t by accumulating all partial derivatives of J0 with
respect to x from each time step tf , tf − 1, . . . , t

I Those partials taken at later times t + 1, . . . , tf , are
propagated to time t via the adjoint model (ADM), which is

the transpose
[
∂L[x(t)]
x(t)

]T
of the model Jacobian or tangent

linear model (TLM), ∂x(t+1)
x(t) = ∂L[x(t)]

x(t)

I contributions from different times linearly superimposed

I Simplifying the example objective function: instead of the
time-mean, only the volume at the last time step tf is chosen:
now all terms except the one containing ∂V [x(tf )]

∂x(tf )
vanish
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The time-varying problem: the chain rule

J0 : x(0) 7−→ y = x(tf ) 7−→ J0[y]
x(0) 7−→ L[x(tf − 1)] 7−→ V [L[x(tf − 1)]]

is composite mapping for special case, J0 = V [x(tf )] = V [y]

J0 = V [x(tf )]

= V [L[L[. . . L[x(0)]]]]

and corresponding perturbation:

δJ0 =
∂V

∂x(tf )
δx(tf )

=
∂V

∂x(tf )
· ∂x(tf )

∂x(tf − 1)
· . . . · ∂x(1)

∂x(0)
· δx(0)
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The time-varying problem: the chain rule

δJ0 =
〈∂V
∂y

∣∣∣ δy〉
=
〈 ∂V

∂x(tf )

∣∣∣ ∂x(tf )

∂x(tf − 1)
· . . . · ∂x(1)

∂x(0)
· δx(0)

〉
=
〈[∂x(1)

∂x(0)

]T
· . . . ·

[
∂x(tf )

∂x(tf − 1)

]T
· ∂V

∂x(tf )

∣∣∣ δx(0)
〉

=
〈 ∂V

∂x(0)

∣∣∣ δx(0)
〉

δJ0 =
〈 ∂V

∂x(tf )

∣∣∣ T LM · δx(0)
〉

=
〈
ADM · ∂V

∂x(tf )

∣∣∣ δx(0)
〉

Compare ADM with expression for Lagrange multipliers.
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3-box model of the THC

3-box model of the THC

Inspired by work with Laure Zanna & Eli Tziperman (2010)
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3-box model of the THC: overview

DO t = 1, nTimeSteps

calc. density

ρ = −αT + βS

calc. thermohaline transport

U = U(ρ(T ,S))

calc. tracer advection

d

dt
Tr = f (Tr ,U)

calc. timestepping, update
tracer fields Tr = {T ,S}

END DO
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3-box model of the THC: overview

ρi = −αTi + βSi

U = u0
{
ρ2 − [Hρ1 + (1− H)ρ3 ]

}
dT3

dt
= U(T2 − T3)/V3

dS3
dt

= U(S2 − S3)/V3
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3-box model: consider advection equation for T3

dT3
dt = U(T3 − T2), for U ≥ 0

diffT3 = u ∗ (T3− T2)

I total derivative:

δdiffT3 =
∂diffT3

∂U
δU +

∂diffT3

∂T2
δT2 +

∂diffT3

∂T3
δT3

I in matrix form:
δdiffT3
δT3
δT2
δU


λ

=


0 −U U T3− T1

0 1 0 0

0 0 1 0

0 0 0 1

 ·


δdiffT3
δT3
δT2
δU


λ−1
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3-box model: consider advection equation for T3

I Transposed relationship yields:
δ∗diffT3
δ∗T3
δ∗T2
δ∗U


λ−1

=


0 0 0 0

−U 1 0 0

U 0 1 0

T3− T1 0 0 1

 ·


δ∗diffT3
δ∗T3
δ∗T2
δ∗U


λ

I and thus adjoint code:

adT3 = adT3 - u*addiffT3

adT2 = adT2 + u*addiffT3

adU = adu + (T3-T2)*addiffT3

addiffT3 = 0

Note: state T2, T3, U are required to evaluate derivative
at each time step, in reverse order!
−→ TANGENT linearity
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Reverse order integration (i)

DO istep = 1, nTimeSteps

call density(ρ)

call transport(U)

call timestep(T ,S)

call update(T , S)

END DO

DO istep = nTimeSteps, 1, -1

C recompute required variables

DO iaux = 1, istep

call density(ρ)
call transport(U)
call timestep(T ,S)
call update(T ,S)

END DO

C perform adjoint timestep

call adupdate(T , S)

call adtimestep(T ,S)

call adtransport(U)

call addensity(ρ)

END DO
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Reverse order integration (ii)

DO iOuter = 1, nOuter

CADJ STORE T , S → disk

DO iInner = 1, nInner

call density(ρ)
call transport(U)

call timestep(Tr)
call update(Tr)

END DO

END DO

DO iOuter = nOuter, 1, -1

CADJ RESTORE T , S ← disk

DO iInner = 1, nInner

call density(ρ)
call transport(U)
CADJ STORE T , S , U
call timestep(Tr)
call update(Tr)

END DO

DO iInner = nInner, 1, -1

call adupdate(adTr)
call adtimestep(adTr)
CADJ RESTORE T , S , U
call adtransport(adU)
call addensity(adρ)

END DO

END DO
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Reverse order integration (iii)

I Adjoint evaluated in reverse

→ model state at every time step
required in reverse

→ all state stored or recomputed

I Solution: Checkpointing

e.g. Griewank (1992),
Retrepo et al. (1998)

storing vs. recomputation
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Reverse order integration (iv)

I e.g. 3-level checkpointing:

nTimeSteps = n1 · n2 · n3

→ Storing: reduced from n1 · n2 · n3 to

• disk: n2 + n3,
• memory: n1

→ CPU: 3 · forward + 1 · adjoint ≈ 5.5 · forward

I Closely related to adjoint dump & restart problem.
Available queue sizes at HPC Centres may be limited

I Insertion of store directive requires detailed knowledge
of code and AD tool behaviour
−→ not easy (“semi-automatic” differentiation only)
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Ensure correctness of TLM or ADM derived gradient

Procedures to check that AD-derived gradient G ad
i is correct:

consider perturbation of i-th control vector element ui and ∆~ui = δij

finite difference vs. adjoint tangent linear vs. adjoint

G fd
i = J (ui+ε)−J (ui−ε)

2ε G tl
i = ~∇uJ ·∆~ui =

(
~∇uJ

)
i

R fd
i = 1 − G fd

i

G ad
i

Rtl
i = 1 − G tl

i

G ad
i

→ can test ’correctness’ of ADM and TLM gradients G ad
i G ad

i

→ can test ’time horizon’ of linearity assumption

Other approaches: e.g., Taylor remainder test (Patrick Farrell)
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Input/Output — active file handling

I/O of active variables should be accounted for in derivative

READ assigning a value to a variable

WRITE referencing a variable

code hypothetical code adjoint hypothetical code adjoint code

OPEN(8) ADXD = 0. OPEN(9)

...
...

...
...

WRITE(8) X XD = X ADXD = ADXD + ADZ WRITE(9) ADZ

ADZ = 0. ADZ = 0.

...
...

...
...

READ(8) Z Z = XD ADX = ADX + ADXD READ(9) ADXD

ADXD = 0. ADX = ADX + ADXD

ADXD = 0.

...
...

...
...

CLOSE(8) CLOSE(9)

from Giering & Kaminski (1998)
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Scalability

• domain decomposition (tiles) & overlaps (halos)
• split into extensive on-processor and global phase

Global communication/arithmetic op.’s supported by MITgcm’s
intermediate layer (WRAPPER) which need hand-written adjoint forms

operation/primitive forward reverse
• communication (MPI,...): send ←→ receive
• arithmetic (global sum,...): gather ←→ scatter
• active parallel I/O: read ←→ write
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Why Algorithmic/Automatic Differentiation (AD)?
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