Computationa

(TBD)

Modeling, assimilation and
observing

Al/ML algorithm

Compute hardware and software

Collaboration and analysis

lecture: TBD

~ Compute is everywhere!

Some topics

* Julia
* GPUs etc....
* Data centers, data sharing and analysis

* Al/ML opportunities

Julia

Figure 1: Gil Strang’s favorite matrix is strang(n) = SymTridiagonal (2+#ones(n),-ones(n-1))

Julia only stores the diagonal and off-diagonal. (Picture taken in Gil Strang’s classroom.)

Julia: A fresh approach to numerical computing

Jeff Bezanson Alan Edelman Stefan Karpinski Viral B. Shah

MIT and Julia Computing*
July 7. 2015

6 Conclusion and Acknowledgments

We built Julia to meet our needs for numerical computing, and it turns out that many others wanted
exactly the same thing. At the time of writing, not a day goes by where we don’t learn that someone
else has picked up Julia at universities and companies around the world, in fields as diverse as
engineering, mathematics, physical and social sciences, finance, biotech, and many others. More
than just a language, Julia has become a place for programmers, physical scientists, social scientists,
computational scientists, mathematicians, and others to pool their collective knowledge in the form
of online discussions and in the form of code. Numerical computing is maturing and it is exciting to
watch!

Julia would not have been possible without the enthusiasm and contributions of the Julia com-
munity?2. We thank Michael La Croix for his beautiful Julia display macros. We are indebted at
MIT to Jeremy Kepner, Chris Hill, Saman Amarasinghe, Charles Leiserson, Steven Johnson and
Gil Strang for their collegial support which not only allowed for the possibility of an academic re-
search project to update technical computing, but made it more fun too. The authors gratefully

Julia GitHub Stars
Julia Language Only - Does Not Include Julia Packages 10,472

2012 2013 2014 2015 2016 2017 2018 2019

Totalasof Total as of
Jan 2018 Jan 2019

Number of Julia Downloads Initiated via 1.8 million 3.2million +78%

JuliaLang

ber of Julia ds Initiated via Not 4 million Not
DockerHub Available Available
Julia Packages Available 1,688 2,462 +46%
Number of News Articles Mentioning 93 253 +172%
Julia
Julia Discourse Threads + Stack Overflow 8,620 16,363 +90%
Questions
GitHub Stars for Julia Language (Not 9,626 19472 +102%
Including Julia Packages)
Published Citations of Julia: A Fresh 613 1,048 +71%

Approach to Numerical Computing
(2017) and Julia: A Fast Dynamic
Language for Technical Computing
(2012)

* Note: Julia can also call C, C++, Fortran, Python, R, Java and MPI libraries

Julia programming

e Julia is an interactive language * People seem more excited about
(like Matlab/Python). writing Julia code than Fortran

* The language design allows for * More people can write code
so-called “just-in-time” more quickly in Julia
compilation * It remains unclear if more

« =»you can write loops in native people can write rigorous and
Julia and they can run as fast as correct numerical code —
C/Fortran. challenge may be human factors

not language!

) Edit on GitHub Don't Unroll Adjoint: Differentiating SSA-Form

* Zygote Programs

Michael Innes

(Submitted on 18 Oct 2018 (v1), last revised 9 Mar 2019 (this version, v4))
A more advanced example is checkpointing, in which we save memory by re-computing the forward pass of a
function during the backwards pass. To wit:

Julia community

Checkpointing

e Julia community is very

aCtive/la rge a nd SkeWS towa rd julia> @adjoint checkpoint(f, x) = f(x), ¥y -> Zygote._forward(f, x)[2](y)
technical/applied math-science s arsets -+ i, . 1)
minded

julia> checkpoint(f, x) = f(x)
checkpoint (generic function with 1 method)

If a function has side effects we'll see that the forward pass happens twice, as expected.

. .. julia> foo(x) = (println(x); sin(x))
u Iacon 20‘ 9 foo (generic function with 1 method)
julia> gradient(x -> checkpoint(foo, x), 1)
1

1
(0.5483023058681398,)

Madeleine Udell Optim
Cornell University

GPUifYLOOpS.jl using GPUifyLoops

Steven G. Johnson §daz GPUifyLoops tries to function kernel(A)
solve the problem of @loop for i in (1:size(A,1);
code-duplication that threadIdx().x)
can occur when A[i] = 2*A[i]
Steven Lee Y]] writing performant end
DOE Advanced Sci kernels that target @synchronize

multiple devices. end

Oceananigans.jl (https://github.com/climate-
machine/Oceananigans.jl)

» A fast non-hydrostatic ocean model julia>]
in Julia that can berunin 2 or 3 (vl.1) pkg> add Oceananigans

dimensions on CPUs and GPUs. The
plan is to develop it as a stand-
alone large eddy simulation (LES)

using Oceananigans

; Nx, Ny, Nz = 100, 100, 50
model which can be used as a Lx, Ly, Lz = 2000, 2000, 1000
source of training data for statistical Nt, At = 10, 60
learning algorithms and/or ‘ -
model = Model (N=(Nx, Ny, Nz), L=(Lx, Ly, Lz))

embedded within a global ocean
model as a super-parameterization
of small-scale processes, as

in Campin et al., 2011.

time step! (model, Nt, At)

https://en.wikipedia.org/wiki/Large_eddy_simulation
https://www.sciencedirect.com/science/article/pii/S1463500310001496?via%3Dihub

T(2) [°C]

t = 0000000 s (0.00 days)

75 19.80 19.85 19.90 19.95 20.
Turbulent kinetic energy [m?/s?]

-151

—-20 —_— (U + V)2
- 10 x w2/2

-25 4+ T T T
0.000 0.005 0.010 0.015 0.020

Buoyancy flux agw'T’ [K m/s]

100 100

Solver in Julia

function solve_poisson_3d_ppn_planned! (solver::PoissonSolver, g::RegularCartesianGrid, f::CellField, ¢::CellField)
solver.DCT!xf.data # Calculate DCTz(f) in place.
solver.FFT!xf.data # Calculate FFT*¥(f) in place.

for k in 1:9.Nz, j in 1:g.Ny, i in 1:g.Nx
@inbounds ¢.datali, j, k] = -f.datali, j, k]l / (solver.kx2[i] + solver.ky?[j] + solver.kz?[k])

end

¢.datall, 1, 1] = 0

solver.IFFT!x¢.data # Calculate IFFT*¥(¢) in place.
solver.IDCT!x¢.data # Calculate IDCTz(¢) in place.
@. ¢.data = ¢.data / (2xg.Nz)
nothing

end

GPU and CPU in one code

using GPUifyLoops

"Kernel for computing the solution "¢ to Poisson equation for source term “f° on a GPU."
function f2¢!(grid::Grid, f, ¢, kx?, ky?, kz?)
@loop for k in (1:grid.Nz; blockIdx().z)
@loop for j in (1l:grid.Ny; (blockIdx().y — 1) * blockDim().y + threadIdx().y)
@loop for i in (1:grid.Nx; (blockIdx().x — 1) * blockDim().x + threadIdx().x)
@inbounds ¢[i, j, k]l = -f[i, j, k] / (kx2[i] + ky2[j] + kz2[k])
end
end
end
@synchronize
end

GPUs

CPU
32x
32x
64x
64x

128x128x128
128x128x128
256x256x%x256
256x256x256

32x% .32
32x 32
64x 64
64x 64

speedup:

static ocean
static ocean
static ocean
static ocean
static ocean
static ocean
static ocean

static ocean

Apples to apples
Google CPU core hour:GPU hour = GPU is ~2-3x
cheaper than CPU

(Float32) :
(Float64) :
(Float32):
(Float64) :
(Float32) :
(Floato64) :
(Float32) :
(Float64) :

14.13
7.829
121.8
62.92
197.
L2
223
1295

8

06
4
906
417
748
923

a
=)
>,
[
]
o
_l/'l
2
o
O
T

2
a
O

Float64
Float32

—
w
o

104 10°
Number of grid points N = N,N,N

Single CPU core v V100 GPU (2650 64-bit GPU units)

Data centers, data
analysis

Investing $10-20B+/year, every year

Cloud analysis

: Jupyter ecco_v4_example (unsaved changes)
File Edit View Insert Call Kemnal Widgets Help

B 4+ 3 & B 4 ¥ MRin H C W Markdown ¢ =@

sku_description
N Class A Request Multi-Regional Storage
Class A Request Regional Storage
Class B Request Multi-Regional Storage
Class B Request Regicnal Storage
Download APAC
Download Australia
Download Worldwide Destinations (excluding Asia & Australia)
Multi-Regional Storage US
Regional Storage US

Pangeo ECCO Examples

This Jupyter notebook demonstrates how to use xarray and xgcm to analyze data from the ECCO v4r3 ocean state esti
Pangeo Binder from the pangeo_ecco examples github repository.

First we import our standard python packages:

In []: import xarray as Xr
import numpy as np
from matplotlib import pyplot as plt
$matplotlib inline

2’3;‘9
In [2]: import intake

ds = intake.cat.ECCOv4r3.to_dask()

ds

In [10]: mapper(mean_sst, cmap='RdBu r');

In [6]: sst = ds.THETA.se¢

30
In [8]: mean_sst = ds.THETA.sel(k=0).mean(dim='time') &
&
IOE
Very slick, currently impractically expensive — by i

any honest analysis

Home grown data center analysis

Most cost effective problems, but not as slick.

Estimating the Circulation & Climate of the Ocean (ECCO) Portal

eccodata

Show 10 [§J entries

Type Name * Last Modification Time
Directory Ilc_1080 10/31/2018 11:37:29
Directory lic_2160 10/31/2018 11:37:03
Directory lic_270 data temporarily unavailable
Directory lic_4320 10/31/2018 11:36:34

Type Name Last Modification Time

Showing 1 to 4 of 4 entries

ML/Al —is mostly just statistics + lots of data +

compute

* Some interesting papers/ideas

Google’s Deelend aces protein folding

By Robert F, Service

Turns out mastering chess and Go was just for starters. On 2 December, the Google-owned

artificial intelligence firm DeepMind took top honers in the 13th Critical Assessment of Structure

Prediction (CASP), a blannual competition aimed at predicting the 3D structure of proteins

ML deep neural

APPLIED MATHEMATICS

Data-driven discovery of partial differential equations

Samuel H. Rudy,'* Steven L. Brunton,? Joshua L. Proctor,’ J. Nathan Kutz'

We propose a sparse regression method capable of discovering the governing partial differential equation(s) of
a given system by time series measurements in the spatial domain. The regression framework relies on sparsity-

la. Data collection lc. Solve sparse
m 1b. Build nonlinear regression
y gression
=2 ” = library of data and L 4 2o MiinEO¢ PSYT:
™ L) derivatives g B : >
* il = e B0 g o = O(w, u, v)§ '

Ful

d. Identified dynamics

F (U V) = =V

2b. Cc ..xpm.m ary

Compressed data

Guided Bayesian like search

Possible way forward for mesoscale experimentation?

Adversarial DL applied to pets....

Synthesizing Robust Adversarial Examples

Anish Athalye "'?> Logan Engstrom " '> Andrew Ilyas " '*> Kevin Kwok*

M classified as turtle [classified as rifle
M classified as other

Figure 1. Randomly sampled poses of a 3D-printed turtle adver-

1 Persian cat Gua-camole Tabl.)y cat sarially perturbed to classify as a rifle at every viewpoint’. An
2 | Guacamole Tabby cat Egyptian cat unperturbed model is classified correctly as a turtle nearly 100%
3 | Siamese cat| Egyptian cat Persian cat of the time.

4 | Tabby cat Siamese cat Siamese cat

B

2. Look at where the adversarial class is ranked
for each perturbed version

Incompressible Navier-Stokes - ML?

Accelerating Eulerian Fluid Simulation With Convolutional Network:

Jonathan Tompson' Kristofer Schlachter> Pablo Sprechmann?® Ken Perlin>

Convolutional network has some
similarities with spectral filter, but

computer solves for the algorithm....

3x3x3 Conv

velocity divergence

3x3x3 Conv

geom

ReLU ReLLU ReLU
Sx128° DSl :
R i : :
Pooling i E E
861 YT :
22, .i : :
Pooling s H
8x32) 8x32!

3x3x3 Conv

7

8x128*

seee Upscaling

ReLU

1x1x1 Conv 1xIx1 Conv

ReLU

Sx128' Ix128°

l

pressure

Figure 3. Convolutional Network for Pressure Solve

