ECCO summer school 2019

Friday Harbor Labs, May 19-31, 2019

Ocean Modeling, part I

Jean-Michel Campin M.I.T., Cambridge, MA

Plan

Part I

- Ocean Model equations
- Discretised equations, mainly focus on MITgcm formulation
- some modeling recipe (stability, accuracy, conservation)

Part II

- Software architecture
- Forcing and diagnostics
- interface with SGS parameterisation and other components

Continuous set of equations

Hydrostatic, boussinesq, primitive equation in height-coordinate:

1) Simplified Equation of State (EOS) \rightarrow incompressible:

density:
$$\rho = \rho' + \rho_c \simeq \rho(\theta, S, p_o(z))$$

- 2) Use constant ρ_c in place of ρ everywhere except in gravity term \rightarrow boussinesq
- 3) Reduce vertical momentum equation to hydrostatic balance $(\epsilon_{nh}=0) \rightarrow \mathbf{hydrostatic}$

$$\nabla_h \cdot \mathbf{v}_h + \frac{\partial w}{\partial z} = 0 \tag{1}$$

$$\frac{D\mathbf{v}_h}{Dt} + f\hat{\mathbf{k}} \times \mathbf{v}_h + \frac{1}{\rho_c} \nabla_h p = \frac{1}{\rho_c} \mathcal{F}_{\mathbf{v}}$$
 (2)

$$g\rho' + \frac{\partial p'}{\partial z} = 0 + \epsilon_{nh} \left(\mathcal{F}_w - \rho_c \frac{Dw}{Dt} \right)$$
 (3)

$$\rho' = \rho(\theta, S, p_o(z)) - \rho_c \tag{4}$$

$$\frac{D\theta}{Dt} = \frac{1}{\rho_c C_p} \mathcal{H}_{\theta} \tag{5}$$

$$\frac{DS}{Dt} = \frac{1}{\rho_c} \mathcal{Q}_s \tag{6}$$

where
$$\frac{D}{Dt}() = \frac{\partial}{\partial t}() + \mathbf{v} \cdot \nabla()$$
; $\mathbf{v} = (u, v, w) = (\mathbf{v}_h, w)$;

Free surface

Boundary conditions at surface $(z = \eta)$ and bottom (z = -H):

$$w_{(z=\eta)} = \frac{D\eta}{Dt} - \frac{1}{\rho_c}(P - E)$$
 ; $w_{(z=-H)} = -\mathbf{v}_h \cdot \nabla H$

combine with (1):

$$\frac{\partial \eta}{\partial t} + \nabla \int_{-H}^{\eta} \mathbf{v}_h dz = \frac{1}{\rho_c} (P - E) \tag{7}$$

and in (2):
$$\nabla_h p = \nabla_h \left(g \rho_c \eta - g \rho_c z - \int g \rho' dz \right) = \rho_c g \nabla \eta + \nabla_h p'$$

Solving numerically

• Discretise in space

choice of horizontal and vertical grid \Leftrightarrow increment in space $\Delta x, \Delta y, \Delta z$ for each variable ϕ , one value at each grid cell $\phi_{i,j,k}$

• Discretise in time choice of a time increment Δt evolution of variable ϕ represented as ϕ^n at time $t = n\Delta t$

Ideally: chose resolution in space and time according to processes of interest Practically: spacial resolution is limited by computer resources while Δt is generally limited by stability criteria.

 \Rightarrow parameterisation to account for unresolved Sub-Grid Scale (SGS) processes

Time stepping schemes

- Forward Euler time-stepping $(1^{rst}O)$: $(\phi^{n+1} \phi^n)/\Delta t = \frac{\partial \phi}{\partial t}|^n$
- Adams-Bashforth, second order (AB-2): $(\phi^{n+1} \phi^n)/\Delta t = \frac{3}{2} \left. \frac{\partial \phi}{\partial t} \right|^n \frac{1}{2} \left. \frac{\partial \phi}{\partial t} \right|^{n-1}$
- Backward Euler time-stepping $(1^{rst}O)$: $(\phi^{n+1} - \phi^n)/\Delta t = \frac{\partial \phi}{\partial t}|_{t=0}^{t=0}$ generally, $\frac{\partial \phi}{\partial t} = fct(\phi) \rightarrow \text{implicit method}$
- Crank-Nicolson time-stepping $(2^{nd}O, \text{ implicit method})$: $(\phi^{n+1} \phi^n)/\Delta t = \frac{1}{2} \left. \frac{\partial \phi}{\partial t} \right|^n + \frac{1}{2} \left. \frac{\partial \phi}{\partial t} \right|^{n+1}$

Wide range of oceanic time-scales, use different scheme for each term (depending on stability, precision and complexity).

Influence:

- how the code is organized
- how each term is computed (\rightarrow diagnostics)

Simple illustration: 2-D advection of passive tracer

Tracer T advected by non-divergent 2-D flow: $\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$

$$\frac{\partial T}{\partial t} = -u \frac{\partial T}{\partial x} - v \frac{\partial T}{\partial y} = -\frac{\partial u \cdot T}{\partial x} - \frac{\partial v \cdot T}{\partial y} \quad \text{advective form / flux form}$$

• discretise in space $(\Delta x, \Delta y)$ the continuity equation: $\delta^{i}(u\Delta y) + \delta^{j}(v\Delta x) = 0$ and using centered $2^{nd}O$ advection scheme:

$$G_{i,j} = \left. \frac{\partial T}{\partial t} \right|_{(i,j)} = -\frac{1}{\Delta x \Delta y} \left(\delta^i (u \Delta y \, \overline{T}^i) + \delta^j (v \Delta x \, \overline{T}^j) \right)$$

• discretise in time (Δt) using quasi AB-2 (e.g., $\alpha_{AB} = 0.55$):

$$T_{i,j}^{n+1} - T_{i,j}^{n} = \Delta t \left((1 + \alpha_{AB}) G_{i,j}^{n} - \alpha_{AB} G_{i,j}^{n-1} \right)$$

Time stepping choice

- External mode: $\partial \eta/\partial t$ and $-g\nabla \eta$ fast mode: use unconditionally stable scheme (implicit):
 - backward Euler (damp fast, un-resolved adjustment)
 - Crank-Nicolson (energy conserving)
- Momentum advection $G_{\mathbf{v}h}^{adv} = -\mathbf{v} \cdot \nabla \mathbf{v}_h$ and Coriolis term: for precision (energy conservation) and stability, use AB-2 (or AB-3)
- Viscous/Dissipation term $G_{\mathbf{v}h}^{visc} = -\nabla \cdot (-\nu \nabla \mathbf{v}_h)$ use AB-2 (precision), Euler forward (more stable), or/and Backward (implicit) for the vertical part.
- Internal modes: Tracer advection and $-1/\rho_c \nabla p'$
 - AB-2 and synchronized time-stepping
 - Direct Space and Time (DST) tracer advection scheme with staggered time-stepping (more stable)

Surface pressure implicit method

backward time-stepping for surface pressure gradient in (2):

$$\mathbf{v}_h^{n+1} = \mathbf{v}_h^* - \Delta t \, g \nabla \eta^{n+1} \tag{8}$$

with

$$\mathbf{v}_h^* = \mathbf{v}_h^n - \frac{\Delta t}{\rho_c} \nabla p'^{(n+1/2)} + \Delta t \left[\left(G_{\mathbf{v}}^{adv,cori} \right)^{AB} + G_{\mathbf{v}}^{visc}(n) + \frac{1}{\rho_c} \mathcal{F}_{\mathbf{v}}^n \right]$$

and backward time-stepping of transport in (7):

$$\eta^{n+1} = \eta^n - \Delta t \nabla \cdot \int_{-H}^{\eta^n} \mathbf{v}_h^{n+1} dz + \frac{\Delta t}{\rho_c} (P - E)$$

Using (8) to replace \mathbf{v}_h^{n+1} above:

$$\eta^{n+1} - g(\Delta t)^2 \nabla \cdot (H + \eta^n) \nabla \eta^{n+1} = \eta^n - \Delta t \nabla \cdot \int_{-H}^{\eta^n} \mathbf{v}_h^* dz + \frac{\Delta t}{\rho_c} (P - E)$$

Solve iteratively using conjugate gradient method (cg2d)

$$\rightarrow$$
 get η^{n+1} ; replace in (8) to get \mathbf{v}_h^{n+1}

Staggered time-stepping

Used in ECCO set-ups:

- 1) $\mathbf{v}_h^{n-1/2} \to \mathbf{v}_h^{n+1/2}$ using $AB[G_v]^{(n)}$ and p' from θ^n, S^n
- 2) $(\theta^n, S^n) \to (\theta^{n+1}, S^{n+1})$ using

 (2a) $AB[G_{(\theta,S)}]^{(n+1/2)}$ (2b) DST advection scheme $Adv\left(\mathbf{v}^{n+1/2}, (\theta^n, S^n), \Delta t\right)$
- 3) Backward time stepping on Linear term, e.g., vertical viscosity and diffusion: Invert 3 diagonal operator $\mathbf{L}_{\mathbf{v}h}, \mathbf{L}_{\theta,S} \to \mathbf{L}_{\mathbf{v}h}^{-1}, \mathbf{L}_{\theta,S}^{-1}$

Discretisation in space

• curvilinear horizontal grid, locally orthogonal

• staggered variables on Arakawa C grid θ, S, p' at grid-cell center ; u, v, w at grid-cell faces

- bathymetry with partial cell
- finite volume method: budget integrated over a grid-cell

re-scaled vertical coordinate z^*

$$z = \eta + z^* \frac{H + \eta}{H}$$

- vertical coordinate follows free-surface displacement
- stretch/squeeze level thickness (ratio: $(H + \eta)/H$)
- in z^* coordinate, model domain is fixed, from $z^* = -H$ to $z^* = 0$

Volume and Tracer equation

Grid-cell face area: A_x, A_y, A_z (e.g., $A_x = h_W^{fac} \Delta r_F \Delta x_G$), grid cell volume: $\mathcal{V} = A_z \Delta z$ (with $\Delta z = h_C^{fac} \Delta r_F$), volume transport: $U = A_x u$; $V = A_y v$; $W = A_z w$

$$\Delta z^{n+1} - \Delta z^{n} = -\frac{\Delta t}{A_{z}} (\delta^{i} U + \delta^{j} V - \delta^{k} W)$$
$$(\Delta z S)^{n+1} - (\Delta z S)^{n} = -\frac{\Delta t}{A_{z}} \left(\delta^{i} (\widehat{U \cdot S^{n}}^{i}) + \delta^{j} (\widehat{V \cdot S^{n}}^{j}) - \delta^{k} (\widehat{W \cdot S^{n}}^{k}) \right)$$

Tracer (here S) transport fluxes: $\widehat{U.S^n}^i, \widehat{V.S^n}^j, \widehat{W.S^n}^k$ function of selected advection scheme, e.g., with 2nd order centered:

$$\widehat{U.S^n}^i = U \cdot \overline{S^n}^i = U(S_{i-1}^n + S_i^n)/2$$

Note: in z-coordinate, $\Delta z^{n+1} = \Delta z^n$ everywhere except at the surface (non-linear free-surface); with z^* , Δz varies everywhere according to $\frac{\partial \eta}{\partial t}$:

$$\Delta z^{n+1} - \Delta z^n = (\eta^{n+1} - \eta^n) \frac{\Delta z^*}{H}$$

Momentum equation

• Flux form

$$\frac{\partial \mathbf{v}_h}{\partial t} + \left[\nabla \cdot \mathbf{v}\right] \mathbf{v}_h + f \hat{\mathbf{k}} \times \mathbf{v}_h = -g \nabla \eta - \frac{1}{\rho_c} \nabla_h p' + \nabla \cdot (\nu \nabla \mathbf{v}_h) + \frac{1}{\rho_c} \mathcal{F}_{\mathbf{v}}$$

for curvature of horizontal grid, requires to compute and add metric terms

• Vector invariant form (no metric term)

$$\frac{\partial \mathbf{v}_h}{\partial t} + (f + \zeta)\hat{\mathbf{k}} \times \mathbf{v}_h + \nabla \mathbf{KE} + w \frac{\partial}{\partial z} \mathbf{v}_h = -g\nabla \eta - \frac{1}{\rho_c} \nabla_h p' + \nabla \cdot (\nu \nabla \mathbf{v}_h) + \frac{1}{\rho_c} \mathcal{F}_{\mathbf{v}}$$

with vorticity: $\zeta = \nabla \times \mathbf{v}_h$ and kinetic energy: $KE = (u^2 + v^2)/2$

see MITgcm manual (https://mitgcm.readthedocs.io/en/latest/) for detailed discretisation in space of these 2 momentum formulations

Stability Criteria

Based on linear analysis:

• CourantFriedrichsLewy (CFL) number, per process:

advection: $CFL^{adv} = u\Delta t/\Delta x$

internal wave speed c_{iw} : CFL^c_{iw} = $c_{iw}\Delta t/\Delta x$

external gravity wave $c_{ex} = \sqrt{gH}$: $CFL_{ex}^c = c_{ex}\Delta t/\Delta x$

diffusion: $CFL^{diff} = \kappa \Delta t (2/\Delta x)^2$

Coriolis: $CFL^{cori} = f\Delta t$

• time-stepping criteria:

Euler forward: CFL < 1

AB-2: CFL < 1/2

Euler Backward, Crank Nicolson: always stable

DST advection: $CFL^{adv} < 1$

• modified for multi-dimensional / multi-term problem. e.g.,

3-D advection: $CFL^{adv} = \Delta t \cdot \max(u/\Delta x, v/\Delta y, w/\Delta z)$

3-D diffusion: CFL^{diff} = $4 \Delta t \left(\kappa_x / \Delta x^2 + \kappa_y / \Delta y^2 + \kappa_z / \Delta z^2 \right)$

No simple criteria for Non-Linear instability