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Plan

Part I
e Ocean Model equations
e Discretised equations, mainly focus on MITgcm formulation
e some modeling recipe (stability, accuracy, conservation)
Part 11
e Software architecture
e Forcing and diagnostics

e interface with SGS parameterisation and other components



Continuous set of equations

Hydrostatic, boussinesq, primitive equation in height-coordinate:

1) Simplified Equation of State (EOS) — incompressible:

2) Use constant p. in place of p everywhere except in gravity term — boussinesq

3) Reduce vertical momentum equation to hydrostatic balance (e, = 0) — hydrostatic

where
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Free surface

Boundary conditions at surface (z = 7) and bottom (z = —H):
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Solving numerically

e Discretise in space

choice of horizontal and vertical grid < increment in space Az, Ay, Az

for each variable ¢, one value at each grid cell ¢; ; «

e Discretise in time
choice of a time increment At
evolution of variable ¢ represented as ¢™ at time t = nAt

Ideally: chose resolution in space and time according to processes of interest
Practically: spacial resolution is limited by computer resources while
At is generally limited by stability criteria.

= parameterisation to account for unresolved Sub-Grid Scale (SGS) processes



Time stepping schemes

Forward Euler time-stepping (17°*O):
n+1 n __ Og¢p|M
("7 —o") /At = FF

Adams-Bashforth, second order (AB-2):
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Backward Euler time-stepping (17°*O):
n+1 n o |1

(""" — ") /At = 3

generally, % = fct(¢) — implicit method

Crank-Nicolson time-stepping (2¢O, implicit method):
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Wide range of oceanic time-scales, use different scheme for each term
(depending on stability, precision and complexity).

Influence:
e how the code is organized

e how each term is computed (— diagnostics)



Simple illustration: 2-D advection of passive tracer

Tracer T' advected by non-divergent 2-D flow: % + g—z =0

or oT or — ouT ovT
ot ox oy Oz oy

advective form / flux form

e discretise in space (Ax, Ay)
the continuity equation: §*(uAy) + 67 (vAzx) =0

and using centered 2"?O advection scheme:

Gij = %_1; - 1 (5i(UAyTi) + 6 (vAz Tj))
(%,9)

B AxAy
e discretise in time (At) using quasi AB-2 (e.g., aap = 0.55):

T =T = At (1 + aap)Gyy — aap Gij )
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Time stepping choice
e External mode: dn/0t and —gVn
fast mode: use unconditionally stable scheme (implicit):
- backward Euler (damp fast, un-resolved adjustment)

- Crank-Nicolson (energy conserving)

e Momentum advection G2 = —v - Vv,

and Coriolis term:

for precision (energy conservation) and stability, use AB-2 (or AB-3)

e Viscous/Dissipation term GU}° = —V - (=vVvy)
use AB-2 (precision), Euler forward (more stable), or/and Backward
(implicit) for the vertical part.
e Internal modes: Tracer advection and —1/p.Vp’
- AB-2 and synchronized time-stepping

- Direct Space and Time (DST) tracer advection scheme with staggered

time-stepping (more stable)



Surface pressure implicit method

backward time-stepping for surface pressure gradient in (2):
vttt = v — At gVt (8)

with
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and backward time-stepping of transport in (7):
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Solve iteratively using conjugate gradient method (cg2d)

— get ™ ; replace in (8) to get v



Staggered time-stepping
Used in ECCO set-ups:
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Discretisation in space

e curvilinear horizontal grid, locally orthogonal

e staggered variables on Arakawa C grid

0,S,p" at grid-cell center ; u, v, w at grid-cell faces

e bathymetry with partial cell

e finite volume method:

budget integrated over a grid-cell
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re-scaled vertical coordinate z*

H+n
H

- vertical coordinate follows free-surface displacement

z=n+2z"

- stretch/squeeze level thickness (ratio: (H +n)/H)

- in 2z coordinate, model domain is fixed, from z* = —H to z* =0

z-coord. z*-coord.

L T e
) .. e
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Volume and Tracer equation

Grid-cell face area: Ay, Ay, A, (e.g., Ay = h{i‘?cArpAazc;),
grid cell volume: V = A, Az (with Az = hl*“Arp),
volume transport: U = Azu; V=A,v; W =A,w

Az" T — A" ﬁt (S'U+ 6V —5"W)
n+1 n At ji o 7 ko= k
(Az8)" = (Az8)" = -5 (5 (U.57") + 67 (V.5 ) — 6% (W.9n ))

Tracer (here S) transport fluxes: U.S™ ,V.S”J, W.S™ function of selected

adveqtion scheme, e.g., with 2nd order centered:
USh =U-S% =U(S!, +S)/2

Note: in z-coordinate, Az""' = Az" everywhere except at the surface (non-linear

free-surface); with z*, Az varies everywhere according to %:

Az*
H

Azn—I—l . Azn — (nn—l—l . nn)
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Momentum equation

e Flux form

1, 1
(;;h IV -v]vy, + fk X vy =—gVn — p—Vhp + V- (vVvy) + p_]:v

for curvature of horizontal grid, requires to compute and add metric terms

e Vector invariant form (no metric term)

0 0 1
(;;h (f—I—C)kxvh—I—VKE—I—wa—Vh = —gVn—p—Vhp +V- (VVVh)+p—FV

with vorticity: ¢ =V x v, and kinetic energy: KE = (u” + v?)/2

see MITgem manual ( https://mitgecm.readthedocs.io/en/latest/ ) for detailed

discretisation in space of these 2 momentum formulations
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Stability Criteria
Based on linear analysis:

e CourantFriedrichsLewy (CFL) number, per process:
advection: CFL*% = uAt/Ax
internal wave speed ci,: CFLf, = ciwAt/Ax
external gravity wave ce, = /gH: CFL{, = ceo At/ Ax
diffusion: CFL%// = xAt(2/Ax)?
Coriolis: CFL"™ = fAt

e time-stepping criteria:
Euler forward: CFL < 1
AB-2: CFL < 1/2
Euler Backward, Crank Nicolson: always stable
DST advection: CFL*% < 1

e modified for multi-dimensional / multi-term problem. e.g.,
3-D advection: CFL** = At - max(u/Ax,v/Ay, w/Az)
3-D diffusion: CFLY/ =4 At (ko /AZ® + Ky /AY® + k. [ AZ7)

No simple criteria for Non-Linear instability
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