

Why care about sea level?

Photo credit: Miami Dade DERM

Photo credit: US Coast Guard/Getty Images

➤ Major societal concern ... > 2 million people on US east coast, ~150 million world-wide, live less than 1 m above local mean high water ... potential flood costs measured in trillions of dollars under some climate change scenarios

- Key climate metric ...changes in global mean sea level closely reflect changes in ocean heat and freshwater content, which are related to the climate state
- Key dynamic variable ...sea level gradients contain information about surface geostrophic currents

> Relatively well observed

Tide gauges (back to 18th century)

Outline

- Basic definitions and processes
- > Hydrostatic approximation
- Dynamic vs. static sea level
- Sea level response to various forcing factors
- > Influence of nonlinear effects

Some basic definitions

Basic physical processes

- > Volume changes from flow convergence/divergence
 - Boussinesq vs. non-Boussinesq model representations of density effects
- Boundary fluxes (evaporation, precipitation, land runoff from rivers and other sources, nonfloating ice, sediment)
 - > Virtual salt vs. real freshwater flux representations
 - Some factors poorly treated or ignored
- Vertical land motion
 - Relative vs. geocentric sea level

Forcing factors

- > Surface atmospheric winds
- Surface atmospheric pressure
- Evaporation and precipitation
- Freshwater exchange with land (liquid + solid)
- Surface heat flux
- Bottom geothermal flux
- Gravitation: tide potential
- Gravitation: non-tidal (e.g., land ice)
- Self-gravitation
- Bottom motion (e.g. tsunami generation)

Hydrostatic approximation

Integrating in the vertical gives

$$\Delta \zeta = (\Delta p_b - g) \Delta \rho dz - \Delta p_a) / g \rho_0$$

Variability in ζ can be diagnosed from

- bottom pressure p_b (related to changes in mass of water column)
- > steric height $-\rho_0^{-1}\triangle\rho$ dz (related to changes in density ρ)
- > surface atmospheric pressure p_a (inverted barometer)

Relation to steric height, p_b

A global spectral view based on ECCO state estimate...

...but there is considerable spatial dependence

Importance of p_b at long timescales

Correlation of ζ (altimetry) and p_b (GRACE) at interannual time scales

Ratio of p_b (GRACE) and ζ (altimetry) standard deviations

Piecuch et al. (2013, Geophysical Research Letters)

Steric height budgets

Piecuch and Ponte (2011, Geophys. Res. Lett.)

Exploring forcing mechanisms

Piecuch and Ponte (2012, Geophys. Res. Lett.)

Steric height budgets

Buoyancy-driven steric height

Steric term from ocean advection

Steric term from local forcing

Piecuch and Ponte (2012, Geophys. Res. Lett.)

Dynamic vs. static sea level

Some sea level gradients have little dynamical relevance...

Mean Sea Surface (mapped by satellite altimeters)

Static signals (inverted barometer)

...the case of the sea level response to surface atmospheric pressure (p_a) at long timescales

$$\Delta \zeta = - \Delta p_a / g \rho_0$$

Piecuch & Ponte (2015, GRL)

Dynamic signals (T < 60 days)

Bottom pressure recorder comparisons from M. Schindelegger (U. Bonn)

ECCO v4r3

ECCO v4r3 + atmospheric pressure forcing

Other static signals

- Long-period tides mostly static or equilibrium, in contrast with short-period tides...the case for resonance
- Response to gravitational forcing from changes in land water and ice
- Surface mass loading from freshwater fluxes (e.g., river runoff)

Non-tidal gravitational forcing

Tamisiea et al. (2010, J. Geophys. Res.)

- Changes in the mass field over land, even without involving mass transfer to the oceans, affect sea level through the physics of gravitational attraction and loading (GAL):
 - Surface atmospheric pressure and distribution of air mass over land
 - Terrestrial water storage
 - Land ice (glaciers and ice sheets)
- At monthly and longer time scales, response associated with GAL effects is expected to be nearly static in nature

GAL-related sea level trends

Typical effects of order 1mm/yr, larger (negative) trends and strongest spatial gradients near the ice sheets

Largest transport changes near ice sheets, with accumulated transport errors ~ 5 Sv across sections in Southern Ocean, subpolar North Atlantic

Ponte et al. (2010, J. Atmos. Oce. Tech.)

Sea Level Change Relative to April 2002 July 2013

Freshwater loading

- Static response to freshwater loading involves quasi-instantaneous* spread of the load homogeneously over the global ocean
- Mostly valid but not always
 - Resonant forcing
 - Very shallow water (slow adjustment)
 - Frictionally or geometrically constricted flows
 - > Barotropic/baroclinic coupling

*quasi-instantaneous = fast compared with the time scale of the anomalous load

Ponte (2006, J. Phys. Oceanogr.)

E-P

Other examples

- Possible dynamic response in semi-enclosed basins, e.g.,
 - Black Sea (Volkov et al. 2016, GRL)
 - Arctic (Peralta-Ferriz and Morison, 2010, GRL)

Barotropic model response to river runoff (annual cycle)

Modeling/estimation issues

- Most models do not represent static sea level processes (e.g., no tidal and non-tidal gravitational forcing, no p_a forcing)
- Appropriate corrections need to be applied to data before sea level constraints can be used
- Problems arise when assumptions of static response break down (resonance, flow constraints, fast timescales/long spatial scales relative to wave adjustment scales,...)
- Best to represent as many processes as possible in the model physics

Nonlinear processes

Qiu et al. (2015, J. Climate)

blue: wind+eddies; red: wind; green: difference

Nonlinear processes

Results for T > 18 months, L > 12 degrees

- Model-based results from running 1/12° experiments with and without atmospheric forcing effects
- Substantial intrinsic sea level variability at low frequency, large scale

Serrazin et al. (2015, J. Climate)

Summary

> ...